-
1
-
-
0032820242
-
-
For reviews of DCC, see: a
-
For reviews of DCC, see: a) J. M. Lehn, Chem. Eur. J. 1999, 5, 2455-2463;
-
(1999)
Chem. Eur. J
, vol.5
, pp. 2455-2463
-
-
Lehn, J.M.1
-
2
-
-
0000891577
-
-
b) S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. 2002, 114, 938-993;
-
(2002)
Angew. Chem
, vol.114
, pp. 938-993
-
-
Rowan, S.J.1
Cantrill, S.J.2
Cousins, G.R.L.3
Sanders, J.K.M.4
Stoddart, J.F.5
-
3
-
-
0000671730
-
-
Angew. Chem. Int. Ed. 2002, 41, 898-952;
-
(2002)
Chem. Int. Ed
, vol.41
, pp. 898-952
-
-
Angew1
-
4
-
-
33750002664
-
-
c) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652-3711.
-
(2006)
Chem. Rev
, vol.106
, pp. 3652-3711
-
-
Corbett, P.T.1
Leclaire, J.2
Vial, L.3
West, K.R.4
Wietor, J.-L.5
Sanders, J.K.M.6
Otto, S.7
-
5
-
-
1842427379
-
-
For selected recent applications of DCC, see: a
-
For selected recent applications of DCC, see: a) P. A. Brady, R. P. Bonar-Law, S. J. Rowan, C. J. Suckling, J. K. M. Sanders, Chem. Commun. 1996, 319-320;
-
(1996)
Chem. Commun
, pp. 319-320
-
-
Brady, P.A.1
Bonar-Law, R.P.2
Rowan, S.J.3
Suckling, C.J.4
Sanders, J.K.M.5
-
6
-
-
0000447945
-
-
b) K. Oh, K.-S. Jeong, J. S. Moore, Nature 2001, 414, 889-893;
-
(2001)
Nature
, vol.414
, pp. 889-893
-
-
Oh, K.1
Jeong, K.-S.2
Moore, J.S.3
-
7
-
-
0037178738
-
-
c) S. Otto, R. L. E. Furlan, J. K. M. Sanders, Science 2002, 297, 590-593;
-
(2002)
Science
, vol.297
, pp. 590-593
-
-
Otto, S.1
Furlan, R.L.E.2
Sanders, J.K.M.3
-
8
-
-
0141452374
-
-
d) A. F. M. Kilbinger, S. J. Cantrill, A. W. Waltman, M. W. Day, R. H. Grubbs, Angew. Chem. 2003, 115, 3403-3407;
-
(2003)
Angew. Chem
, vol.115
, pp. 3403-3407
-
-
Kilbinger, A.F.M.1
Cantrill, S.J.2
Waltman, A.W.3
Day, M.W.4
Grubbs, R.H.5
-
9
-
-
0042768508
-
-
Angew. Chem. Int. Ed. 2003, 42, 3281-3285; ;
-
(2003)
Chem. Int. Ed
, vol.42
, pp. 3281-3285
-
-
Angew1
-
10
-
-
4043107670
-
-
e) S. A. Vignon, J. Thibaut, T. Iijima, H.-R. Tseng, J. K. M. Sanders, J. F. Stoddart, J. Am. Chem. Soc. 2004, 126, 9884-9885;
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 9884-9885
-
-
Vignon, S.A.1
Thibaut, J.2
Iijima, T.3
Tseng, H.-R.4
Sanders, J.K.M.5
Stoddart, J.F.6
-
11
-
-
25444472910
-
-
f) S. J. Cantrill, R. H. Grubbs, D. Lanari, K. C. F. Leung, A. Nelson, K. G. Poulin-Kerstien, S. P. Smidt, J. F. Stoddart, D. A. Tirrell, Org. Lett. 2005, 7, 4213-4216;
-
(2005)
Org. Lett
, vol.7
, pp. 4213-4216
-
-
Cantrill, S.J.1
Grubbs, R.H.2
Lanari, D.3
Leung, K.C.F.4
Nelson, A.5
Poulin-Kerstien, K.G.6
Smidt, S.P.7
Stoddart, J.F.8
Tirrell, D.A.9
-
13
-
-
33745728234
-
-
h) B. Shi, R. Stevenson, D. J. Campopiano, M. F. Greaney, J. Am. Chem. Soc. 2006, 128, 8459-8467;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 8459-8467
-
-
Shi, B.1
Stevenson, R.2
Campopiano, D.J.3
Greaney, M.F.4
-
14
-
-
33746926740
-
-
i) L. Vial, R. F. Ludlow, J. Leclaire, R. Pérez-Fernández, S. Otto, J. Am. Chem. Soc. 2006, 128, 10253-10257.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 10253-10257
-
-
Vial, L.1
Ludlow, R.F.2
Leclaire, J.3
Pérez-Fernández, R.4
Otto, S.5
-
15
-
-
0037467369
-
-
a) S. E. Eldred, D. A. Stone, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc. 2003, 125, 3422-3423;
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 3422-3423
-
-
Eldred, S.E.1
Stone, D.A.2
Gellman, S.H.3
Stahl, S.S.4
-
16
-
-
33646152127
-
-
b) J. M. Hoerter, K. M. Otte, S. H. Gellman S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 5177-5183.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 5177-5183
-
-
Hoerter, J.M.1
Otte, K.M.2
Gellman, S.H.3
Stahl, S.S.4
-
17
-
-
33846511518
-
-
III-catalyzed transamidation is proportional to the concentrations of the metal and the amine (see Ref. [3b]). Both of these species are present at low concentration in amide metathesis. Thus far, we have not identified practical conditions for amide metathesis which involves a transamidation mechanism.
-
III-catalyzed transamidation is proportional to the concentrations of the metal and the amine (see Ref. [3b]). Both of these species are present at low concentration in amide metathesis. Thus far, we have not identified practical conditions for amide metathesis which involves a transamidation mechanism.
-
-
-
-
18
-
-
0030441086
-
-
P. G. Swann, R. A. Casanova, A. Desai, M. M. Frauenhoff, M. Urbancic, U. Slomczynska, A. J. Hopfinger, G. C. LeBreton, D. L. Venton, Biopolymers 1996, 40, 617-625.
-
(1996)
Biopolymers
, vol.40
, pp. 617-625
-
-
Swann, P.G.1
Casanova, R.A.2
Desai, A.3
Frauenhoff, M.M.4
Urbancic, M.5
Slomczynska, U.6
Hopfinger, A.J.7
LeBreton, G.C.8
Venton, D.L.9
-
19
-
-
0034501419
-
-
This strategy finds loose precedent in the anionic, ring-opening polymerization (ROP) of lactams, which employs imide (N-acyllactam) and Brønsted base coinitiators. Polymer chain initiation and propagation are believed to proceed through attack of a deprotonated lactam on the imide carbonyl of the initiator or polymer chain end. For a discussion, see: K. Hashimoto, Prog. Polym. Sci. 2000, 25, 1411-1462
-
This strategy finds loose precedent in the anionic, ring-opening polymerization (ROP) of lactams, which employs imide (N-acyllactam) and Brønsted base coinitiators. Polymer chain initiation and propagation are believed to proceed through attack of a deprotonated lactam on the imide carbonyl of the initiator or polymer chain end. For a discussion, see: K. Hashimoto, Prog. Polym. Sci. 2000, 25, 1411-1462.
-
-
-
-
20
-
-
33846545936
-
-
Typical reaction procedure: In a disposable vial (4 mL), a 1:1 mixture of amides (0.23 mmol) and base (20 mol%, 0.046 mmol) were mixed in diglyme (0.8 mL) under nitrogen. To this mixture, imide initiator (20 mol %, 0.046 mmol) and triphenylmethane (0.018 mol, 4.4 mg) as an internal standard were added. The vials were sealed under nitrogen and placed into a 48-well parallel reactor mounted on a vortexing mixer. The reactions were heated to 120°C for 18 h and quenched with water (1 mL). The organics were extracted into diethyl ether, and product ratios were determined by GC analysis relative to the triphenylmethane standard.
-
Typical reaction procedure: In a disposable vial (4 mL), a 1:1 mixture of amides (0.23 mmol) and base (20 mol%, 0.046 mmol) were mixed in diglyme (0.8 mL) under nitrogen. To this mixture, imide initiator (20 mol %, 0.046 mmol) and triphenylmethane (0.018 mol, 4.4 mg) as an internal standard were added. The vials were sealed under nitrogen and placed into a 48-well parallel reactor mounted on a vortexing mixer. The reactions were heated to 120°C for 18 h and quenched with water (1 mL). The organics were extracted into diethyl ether, and product ratios were determined by GC analysis relative to the triphenylmethane standard.
-
-
-
-
21
-
-
33846497759
-
-
See, for example: a ref, 3b];
-
See, for example: a) ref. [3b];
-
-
-
-
22
-
-
27544449414
-
-
b) D. A. Kissounko, I. A. Guzei, S. H. Gellman, S. S. Stahl, Organometallics 2005, 24, 5208-5210;
-
(2005)
Organometallics
, vol.24
, pp. 5208-5210
-
-
Kissounko, D.A.1
Guzei, I.A.2
Gellman, S.H.3
Stahl, S.S.4
-
23
-
-
0037013785
-
-
c) B. H. Huang, T. L. Yu, Y. L. Huang, B. T. Ko, C. C. Lin, Inorg. Chem. 2002, 41, 2987-2994;
-
(2002)
Inorg. Chem
, vol.41
, pp. 2987-2994
-
-
Huang, B.H.1
Yu, T.L.2
Huang, Y.L.3
Ko, B.T.4
Lin, C.C.5
-
25
-
-
0040584927
-
-
For imide preparation, see
-
For imide preparation, see: R. P. Mariella, K. H. Brown, J. Org. Chem. 1971, 36, 735-737.
-
(1971)
J. Org. Chem
, vol.36
, pp. 735-737
-
-
Mariella, R.P.1
Brown, K.H.2
-
26
-
-
33846485425
-
-
One reviewer noted that O-acylated intermediates might participate in these reactions. Understanding the role of such intermediates, if they indeed exist, and identifying catalyst-decomposition pathways might reveal ways to achieve improved catalytic activity at lower temperature.
-
One reviewer noted that O-acylated intermediates might participate in these reactions. Understanding the role of such intermediates, if they indeed exist, and identifying catalyst-decomposition pathways might reveal ways to achieve improved catalytic activity at lower temperature.
-
-
-
|