-
4
-
-
0001555561
-
-
b) P. A. Leach, S. J. Geib, J. A. Corella, G. F. Warnock, N. J. Cooper, J. Am. Chem. Soc. 1994, 116, 8566.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 8566
-
-
Leach, P.A.1
Geib, S.J.2
Corella, J.A.3
Warnock, G.F.4
Cooper, N.J.5
-
5
-
-
0003155632
-
-
T. L. Utz, P. A. Leach, S. J. Geib, N. J. Cooper, Chem. Commun. 1997, 847.
-
(1997)
Chem. Commun
, pp. 847
-
-
Utz, T.L.1
Leach, P.A.2
Geib, S.J.3
Cooper, N.J.4
-
6
-
-
0034679020
-
-
M. V. Barybin, V. G. Young, Jr., J. E. Ellis, J. Am. Chem. Soc. 2000, 122, 4678.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 4678
-
-
Barybin, M.V.1
Young Jr., V.G.2
Ellis, J.E.3
-
7
-
-
0032850012
-
-
M. V. Barybin, V. G. Young, Jr., J. E. Ellis, J. Am. Chem. Soc. 1999, 121, 9237.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 9237
-
-
Barybin, M.V.1
Young Jr., V.G.2
Ellis, J.E.3
-
8
-
-
0005488915
-
-
J. A. Corella, R. L. Thompson, N. J. Cooper, Angew. Chem. 1992, 104, 55;
-
(1992)
Angew. Chem
, vol.104
, pp. 55
-
-
Corella, J.A.1
Thompson, R.L.2
Cooper, N.J.3
-
11
-
-
0032546771
-
-
Angew. Chem. Int. Ed. 1998, 37, 1515.
-
(1998)
Chem. Int. Ed
, vol.37
, pp. 1515
-
-
Angew1
-
12
-
-
0011486268
-
-
In particular, monohydrides [HMLn] z+1, dimers [MLnx]2 z, and the parent [MLn]z species may react with a given electrophile to afford identical derivatives. For example, CpRe(CO)2H, combines with excess MeI to give [CpRe(CO)2Me2, the same product expected from a corresponding reaction with the unknown [CpRe(CO)2]2- ion; see: G. K. Yang, R. G. Bergman, J. Am. Chem. Soc. 1983, 105, 6500
-
2- ion; see: G. K. Yang, R. G. Bergman, J. Am. Chem. Soc. 1983, 105, 6500.
-
-
-
-
13
-
-
0002547092
-
-
In addition, Cr(CO)5]2- and [Cr 2(CO)10]2- react with Ph3SnCl to provide the same triphenylstannyl derivative, Ph3SnCr(CO) 5, along with Cl- and [ClCr(CO) 5, respectively; see: J. E. Ellis, S. G. Hentges, D. G. Kalina, G. P. Hagen, J. Organomet. Chem. 1975, 97, 79
-
-, respectively; see: J. E. Ellis, S. G. Hentges, D. G. Kalina, G. P. Hagen, J. Organomet. Chem. 1975, 97, 79.
-
-
-
-
15
-
-
0001374195
-
-
D. L. Cronin, J. R. Wilkinson, L. J. Todd, J. Magn. Reson. 1975, 17, 353.
-
(1975)
J. Magn. Reson
, vol.17
, pp. 353
-
-
Cronin, D.L.1
Wilkinson, J.R.2
Todd, L.J.3
-
19
-
-
33846546658
-
-
Crystal structure analysis, 1: [K([2.2.2]cryptand, 2[Fe(CNXyl)4, C72H108FeK 2N8O12; monoclinic; P2 1/n; dark red plates; a, 13.264(1, b, 24.701(2, c, 22.867(2) Å; β, 94.417(2)°; V, 7470(1) Å3; Z, 4; T, 173(2) K; λ, 0.71073 Å; 43 309 reflections, 13 203 independent; R1, 0.0468 (I > 2σ(I, wR2, 0.1301 (for all data, μ, 0.377 mm-1 (SADABS, full matrix, least squares on F 2. CCDC 617973 (1, 617974 (3, and 617975 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
-
2. CCDC 617973 (1), 617974 (3), and 617975 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
-
-
-
-
21
-
-
0007937175
-
-
4] have also been reported, but both of these suffer from relatively large ranges in Fe-C bond lengths: R. G. Teller, R. G. Finke, J. P. Collman, H. B. Chin, R. Bau, J. Am. Chem. Soc. 1977, 99, 1104.
-
4] have also been reported, but both of these suffer from relatively large ranges in Fe-C bond lengths: R. G. Teller, R. G. Finke, J. P. Collman, H. B. Chin, R. Bau, J. Am. Chem. Soc. 1977, 99, 1104.
-
-
-
-
22
-
-
33846494297
-
-
[17] particularly because the atomic radius of iron is 0.01-Å larger than that of nickel; see: A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon, Oxford, UK, 1984, p. 1288.
-
[17] particularly because the atomic radius of iron is 0.01-Å larger than that of nickel; see: A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon, Oxford, UK, 1984, p. 1288.
-
-
-
-
23
-
-
4444265732
-
-
F. E. Hahn, M. Münder, R. Fröhlich, Z. Naturforsch. B 2004, 59, 850.
-
(2004)
Z. Naturforsch. B
, vol.59
, pp. 850
-
-
Hahn, F.E.1
Münder, M.2
Fröhlich, R.3
-
24
-
-
33846507341
-
-
[4] have statistically identical average isocyanide C-N bond lengths of 1.20(3) and 1.20(2) Å, respectively.
-
[4] have statistically identical average isocyanide C-N bond lengths of 1.20(3) and 1.20(2) Å, respectively.
-
-
-
-
26
-
-
33846473811
-
-
[5] because they all suffered from large ranges of C-N-C angles due to substantial perturbation by cations in their respective crystalline lattices.
-
[5] because they all suffered from large ranges of C-N-C angles due to substantial perturbation by cations in their respective crystalline lattices.
-
-
-
-
27
-
-
33846498066
-
-
Although the average C-N-C angle in 1 is the smallest known for terminal isocyanides in a homoleptic complex, a heteroleptic Ta(I) species, namely [Ta(CNMe)2(dmpe)2Cl, dmpe, 1,2-bis (dimethylphosphano)ethane) apparently holds the record for this value. It has an average C-N-C angle of 122.0(7)°, and the isocyanides in this complex were considered to be essentially bound heteroallenes, that is, M=C=NR. See: E. M. Carnahan, S. J. Lippard, J. Am. Chem. Soc. 1992, 114, 466
-
2Cl] (dmpe = 1,2-bis (dimethylphosphano)ethane) apparently holds the record for this value. It has an average C-N-C angle of 122.0(7)°, and the isocyanides in this complex were considered to be essentially bound heteroallenes, that is, M=C=NR. See: E. M. Carnahan, S. J. Lippard, J. Am. Chem. Soc. 1992, 114, 466.
-
-
-
-
28
-
-
0000967654
-
-
and references therein
-
R. K. Pomeroy, L. Vancea, H. P. Calhoun, W. A. G. Graham, Inorg. Chem. 1977, 16, 1508, and references therein.
-
(1977)
Inorg. Chem
, vol.16
, pp. 1508
-
-
Pomeroy, R.K.1
Vancea, L.2
Calhoun, H.P.3
Graham, W.A.G.4
-
29
-
-
33846540356
-
-
However, despite this and prior promising results,[7] no homoleptic alkylisocyanidemetalates have been established in the scientific literature
-
[7] no homoleptic alkylisocyanidemetalates have been established in the scientific literature.
-
-
-
-
30
-
-
33846470065
-
-
Crystal structure analyses, 3: C72H 66FeN4Sn2; triclinic; P1; pale yellow plates; a, 12.668(2, b, 12.733(2, c, 20.026(3) Å, α, 87.026(3, β, 89.783(3, γ, 72.945(3)°; V, 3076.2(9) Å3; Z, 2; T= 173(2) K; λ, 0.71073 Å; 25,200 reflections, 10 817 independent; R1, 0.0387 (I > 2σ(I, wR2, 0.1125 (for all data, μ, 1.083 mm -1 (SADABS, full matrix, least squares on F2. 4: C56H66FeN4Sn2; monoclinic; P21/n; colorless block; a, 14.209(2, b, 18.501(2, c, 20.635(3) Å; β, 95.846(2)°; V, 5396(1) Å3; Z, 4; T, 173(2) K; λ, 0.71073; 61 495 reflections, 12 368 independent; R1, 0.0302 (I > 2σI
-
2. See Ref. [14b] for CCDC numbers of 3 and 4, and related information.
-
-
-
-
31
-
-
33846537515
-
-
See:, 3rd ed, Wiley-VCH, Weinheim
-
See: C. Elschenbroich, Organometallics, 3rd ed., Wiley-VCH, Weinheim, 2006, p. 399.
-
(2006)
Organometallics
, pp. 399
-
-
Elschenbroich, C.1
-
32
-
-
0000729395
-
-
U. Schubert, S. Gilbert, S. Mock, Chem. Ber. 1992, 125, 835.
-
(1992)
Chem. Ber
, vol.125
, pp. 835
-
-
Schubert, U.1
Gilbert, S.2
Mock, S.3
|