-
2
-
-
33846447183
-
-
Oxidation: G. Franz, R. A. Sheldon, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
-
"Oxidation": G. Franz, R. A. Sheldon, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
-
-
-
-
3
-
-
0003008911
-
-
Ed, CL. Hill, Wiley, New York
-
C. A. Tolman, J. D. Druliner, M. J. Nappa, N. Herron in Activation and Functionalization of Alkanes, (Ed.: CL. Hill), Wiley, New York, 1989, p. 303.
-
(1989)
Activation and Functionalization of Alkanes
, pp. 303
-
-
Tolman, C.A.1
Druliner, J.D.2
Nappa, M.J.3
Herron, N.4
-
4
-
-
0035276296
-
-
U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinacé, E. L. Pires, Appl. Catal. A 2001, 211, 1.
-
(2001)
Appl. Catal. A
, vol.211
, pp. 1
-
-
Schuchardt, U.1
Cardoso, D.2
Sercheli, R.3
Pereira, R.4
da Cruz, R.S.5
Guerreiro, M.C.6
Mandelli, D.7
Spinacé, E.V.8
Pires, E.L.9
-
5
-
-
33846425457
-
-
Cyclohexanol and Cyclohexanone: M. T. Musser, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
-
"Cyclohexanol and Cyclohexanone": M. T. Musser, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
-
-
-
-
6
-
-
17744397135
-
-
I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peelers, ChemPhysChem 2005, 6, 637.
-
(2005)
ChemPhysChem
, vol.6
, pp. 637
-
-
Hermans, I.1
Nguyen, T.L.2
Jacobs, P.A.3
Peelers, J.4
-
7
-
-
84962376976
-
-
I. Hermans, P. A. Jacobs, J. Peeters, J. Mol. Catal. A 2006, 251, 221.
-
(2006)
J. Mol. Catal. A
, vol.251
, pp. 221
-
-
Hermans, I.1
Jacobs, P.A.2
Peeters, J.3
-
8
-
-
3242886316
-
-
L. Vereecken, T. L. Nguyen, I. Hermans, J. Peeters, Chem. Phys. Lett. 2004, 393, 432.
-
(2004)
Chem. Phys. Lett
, vol.393
, pp. 432
-
-
Vereecken, L.1
Nguyen, T.L.2
Hermans, I.3
Peeters, J.4
-
9
-
-
33744795950
-
-
I. Hermans, P. A. Jacobs, J. Peeters, Chem. Eur. J. 2006, 12, 4229.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 4229
-
-
Hermans, I.1
Jacobs, P.A.2
Peeters, J.3
-
10
-
-
0043144163
-
-
a) J. D. Druliner, P. J. Krusic, G. F. Lehr, C. A. Tolman, J. Org. Chem. 1985, 50, 5838;
-
(1985)
J. Org. Chem
, vol.50
, pp. 5838
-
-
Druliner, J.D.1
Krusic, P.J.2
Lehr, G.F.3
Tolman, C.A.4
-
12
-
-
33646723674
-
-
a) I. Hermans, J. Peeters, P. A. Jacobs, ChemPhysChem 2006, 7, 1142;
-
(2006)
ChemPhysChem
, vol.7
, pp. 1142
-
-
Hermans, I.1
Peeters, J.2
Jacobs, P.A.3
-
13
-
-
33846430990
-
-
b) E. Breynaert, I. Hermans, B. Lambie, G. Maes, J. Peeters, A. Maes, P. Jacobs, Angew. Chem. 2006, 118, 7746;
-
(2006)
Angew. Chem
, vol.118
, pp. 7746
-
-
Breynaert, E.1
Hermans, I.2
Lambie, B.3
Maes, G.4
Peeters, J.5
Maes, A.6
Jacobs, P.7
-
14
-
-
33845232620
-
-
Angew. Chem. Int. Ed. 2006, 45, 7584.
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 7584
-
-
Angew1
-
15
-
-
33846462572
-
-
CyH×[CyH]), with ΣP being the sum of all observed oxidation products from CyH.
-
CyH×[CyH]), with ΣP being the sum of all observed oxidation products from CyH.
-
-
-
-
18
-
-
33846430122
-
-
2]≈0.2M.
-
2]≈0.2M.
-
-
-
-
20
-
-
33846448840
-
-
-1. Therefore this unimolecular reaction will be favored.
-
-1. Therefore this unimolecular reaction will be favored.
-
-
-
-
21
-
-
0141704120
-
-
-1; L. Vereecken, J. Peeters, J Chem. Phys. 2003, 119, 5159.
-
-1; L. Vereecken, J. Peeters, J Chem. Phys. 2003, 119, 5159.
-
-
-
-
22
-
-
84986761418
-
-
This computational result is in good agreement with the experimental rate data of Thompson et. al on the analogous CH3CH2C, O→ CH3CH2, CO reaction: k(T, 5.89 × 1012 s-1 × exp-14.4 kcal mol-1/RT, K. W. Watkins, W. W. Thompson, Int. J. Chem. Kinet. 1973, 5, 791
-
-1/RT): K. W. Watkins, W. W. Thompson, Int. J. Chem. Kinet. 1973, 5, 791.
-
-
-
-
25
-
-
33846404585
-
-
Note that the introduction of diffuse functions on the C and O atoms indeed significantly reduce the barrier, due to a better description of the C⋯OH interaction as explained in the text. Though further increase of the basis set is beyond our computational resources, the true barrier for this reaction is expected to be substantially smaller, probably close to 4.5-5 kcal mol-1
-
-1.
-
-
-
-
26
-
-
0003427206
-
Thermodynamical Data and Structures of Organic Compounds
-
Texas
-
J. B. Pedley, Thermodynamical Data and Structures of Organic Compounds, Volume 1, TRC Data Series, Texas, 1994.
-
(1994)
TRC Data Series
, vol.1
-
-
Pedley, J.B.1
-
27
-
-
33846409573
-
-
-1).
-
-1).
-
-
-
-
28
-
-
3442875306
-
-
J. Peeters, G. Fantechi, L. Vereecken, J. Atmos. Chem. 2004, 48, 59.
-
(2004)
J. Atmos. Chem
, vol.48
, pp. 59
-
-
Peeters, J.1
Fantechi, G.2
Vereecken, L.3
-
29
-
-
33846448264
-
-
[6] one can estimate a lifetime of the alcohol of about 2 h at 418 K.
-
[6] one can estimate a lifetime of the alcohol of about 2 h at 418 K.
-
-
-
-
30
-
-
19944415298
-
-
I. Hermans, J.-F. Müller, T. L. Nguyen, P. A. Jacobs, J. Peeters, J. Phys. Chem. A 2005, 109, 4303.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 4303
-
-
Hermans, I.1
Müller, J.-F.2
Nguyen, T.L.3
Jacobs, P.A.4
Peeters, J.5
-
31
-
-
33846421120
-
-
-1.
-
-1.
-
-
-
-
32
-
-
33846461792
-
-
Following Benson,[29] the rate of diffusive separation of a caged pair (A⋯B) is given by 3DAB/(r AB)2 × exp(-WAB/RT, where rAB is the initial distance (≈ 3.5 Å, DAB is the diffusion coefficient (≈ 2 × 10-5 cm2s-1) and WAB is the interaction energy between A and B in the solvent ≈ 2.2 kcal mol-1 for CH3OOH⋯O=C.-CH 2CH3, This gives a diffusion rate constant of ≈ 3.5 × 109 s-1
-
-1.
-
-
-
-
34
-
-
33846411168
-
-
-1.
-
-1.
-
-
-
-
35
-
-
33846406146
-
-
Given all the uncertainties in this estimation, the result is in good agreement with the experimental observations. For example, at 6.4% CyH conversion, the sum of byproducts equals ≈75 mM, from with 36.75 mM 6-hydroxyhexanoic acid and 27.45 mM adipic acid. As 6-hydroxyhexanoic acid was identified experimentally as the primary byproduct from which nearly all other byproducts are formed, at this stage 38.25 mM of 6-hydroxyhexanoic acid was converted into other byproducts. The concentration of adipic acid is indeed ≈ 70 % of this value, in good agreement with the predicted 60%.
-
Given all the uncertainties in this estimation, the result is in good agreement with the experimental observations. For example, at 6.4% CyH conversion, the sum of byproducts equals ≈75 mM, from with 36.75 mM 6-hydroxyhexanoic acid and 27.45 mM adipic acid. As 6-hydroxyhexanoic acid was identified experimentally as the primary byproduct from which nearly all other byproducts are formed, at this stage 38.25 mM of 6-hydroxyhexanoic acid was converted into other byproducts. The concentration of adipic acid is indeed ≈ 70 % of this value, in good agreement with the predicted 60%.
-
-
-
-
36
-
-
17744368855
-
-
I. L. Arest-Yakubovich, F. A. Geberger, T. V. Khar'kova, L. E. Mitauer, G. Z. Lipkina, Kinet. Catal. 1989, 30, 959.
-
(1989)
Kinet. Catal
, vol.30
, pp. 959
-
-
Arest-Yakubovich, I.L.1
Geberger, F.A.2
Khar'kova, T.V.3
Mitauer, L.E.4
Lipkina, G.Z.5
-
37
-
-
33846449229
-
-
Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanaya
-
Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
-
-
-
-
41
-
-
0345491105
-
-
b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
|