-
1
-
-
0001173915
-
-
0163-1829 10.1103/PhysRevB.47.12727
-
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 0163-1829 10.1103/PhysRevB.47.12727 47, 12727 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 12727
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
2
-
-
3142705038
-
-
1057-7157 10.1109/JMEMS.2004.828742
-
A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C. -L. Tien, and P. Yang, J. Microelectromech. Syst. 1057-7157 10.1109/JMEMS.2004.828742 13, 505 (2004).
-
(2004)
J. Microelectromech. Syst.
, vol.13
, pp. 505
-
-
Abramson, A.R.1
Kim, W.C.2
Huxtable, S.T.3
Yan, H.4
Wu, Y.5
Majumdar, A.6
Tien, C.-L.7
Yang, P.8
-
3
-
-
20644472437
-
-
0935-9648 10.1002/adma.200401189
-
J. R. Lim, J. F. Whitacre, J. -P. Fleurial, C. -K. Huang, M. A. Ryan, and N. V. Myung, Adv. Mater. (Weinheim, Ger.) 0935-9648 10.1002/adma.200401189 17, 1488 (2005).
-
(2005)
Adv. Mater. (Weinheim, Ger.)
, vol.17
, pp. 1488
-
-
Lim, J.R.1
Whitacre, J.F.2
Fleurial, J.-P.3
Huang, C.-K.4
Ryan, M.A.5
Myung, N.V.6
-
4
-
-
33846307564
-
-
Since many semiconductor nanowires are naturally covered with a layer of electrically insulating oxide that is several nanometers thick, electron transport inside the nanowires and in the matrix material can be decoupled.
-
Since many semiconductor nanowires are naturally covered with a layer of electrically insulating oxide that is several nanometers thick, electron transport inside the nanowires and in the matrix material can be decoupled.
-
-
-
-
9
-
-
33846311183
-
-
note
-
These relations are directly obtained from the Schrödinger equation with infinite barrier boundary conditions. They are strictly valid only if the confining potential is infinite outside the material. A proof goes as follows: inside the material, the wave function corresponding to the set of quantum numbers α, with kz =0 satisfies Eα ψα = (2 2 m⊥) (2 x2 + 2 y2) ψα, subject to the condition ψ=0 at the pore boundaries. Trivially, for a material with different effective mass, m⊥′ and the same pore size and aspect ratio, the energy of the corresponding state α changes as E′ = m⊥ m⊥′ E. Substituting this in the definition of ρ 2D, Eq., one obtains Eq.. A change in the pore separation, d, keeping the aspect ratio dδ constant, is analogous to a change in length units. Let ψ be the wave function corresponding to the case with pore separation d, and ψ′ be the one with pore separation d′. At any point inside the material (excepting the pores) the wave function satisfies Eα = (2 2 m⊥) [(2 l x2 + 2 y2) ψα] ψα. Since the wave functions in the d and d′ cases are related by ψα (x, y) ψ′ α (x d′ d, y d′ d), this implies that their energies are related as Eα′ = (d d′) 2 Eα. Substituting this into Eq. and taking into account the change in the Brillouin zone size, one obtains Eq..
-
-
-
-
10
-
-
0001745529
-
-
0163-1829 10.1103/PhysRevB.49.4565
-
J. O. Sofo and G. D. Mahan, Phys. Rev. B 0163-1829 10.1103/PhysRevB.49. 4565 49, 4565 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 4565
-
-
Sofo, J.O.1
Mahan, G.D.2
-
11
-
-
0035878380
-
-
0163-1829 10.1103/PhysRevB.64.045324
-
D. A. Broido and T. L. Reinecke, Phys. Rev. B 0163-1829 10.1103/PhysRevB.64.045324 64, 045324 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 045324
-
-
Broido, D.A.1
Reinecke, T.L.2
-
12
-
-
33747354364
-
-
0021-8979 10.1063/1.2219162
-
R. Prasher, J. Appl. Phys. 0021-8979 10.1063/1.2219162 100, 034307 (2006).
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 034307
-
-
Prasher, R.1
-
14
-
-
42749098905
-
-
0031-9007 10.1103/PhysRevLett.93.246106
-
N. Mingo and D. A. Broido, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.93.246106 93, 246106 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 246106
-
-
Mingo, N.1
Broido, D.A.2
|