-
1
-
-
0000613724
-
Error estimates for adaptive finite element computations
-
I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer Anal. (1978) 15, 736-754.
-
(1978)
SIAM J. Numer Anal
, vol.15
, pp. 736-754
-
-
Babuška, I.1
Rheinboldt, W.C.2
-
2
-
-
0034461033
-
Adaptive finite element methods for optimal control of partial differential equations: Basic concepts
-
R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concepts. SIAM J. Control Optimization (2000) 39, No. 1, 113-132.
-
(2000)
SIAM J. Control Optimization
, vol.39
, Issue.1
, pp. 113-132
-
-
Becker, R.1
Kapp, H.2
Rannacher, R.3
-
3
-
-
0842325124
-
A posteriori error estimation for finite element discretizations of parameter identification problems
-
R. Becker and B. Vexler, A posteriori error estimation for finite element discretizations of parameter identification problems. Numer. Math. (2004) 96, No. 3, 435-459.
-
(2004)
Numer. Math
, vol.96
, Issue.3
, pp. 435-459
-
-
Becker, R.1
Vexler, B.2
-
5
-
-
0032209963
-
Second order analysis for control constrained optimal control problems of semi-linear elliptic systems
-
J. F. Bonnans, Second order analysis for control constrained optimal control problems of semi-linear elliptic systems. Appl. Math. Optimization (1998) 38, No. 3, 303 -325.
-
(1998)
Appl. Math. Optimization
, vol.38
, Issue.3
, pp. 303-325
-
-
Bonnans, J.F.1
-
6
-
-
84904322799
-
-
E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems. In: Analysis and Optimization of Differential Systems (Eds. V. Barbu, I. Lasiecka, D. Tiba, and C. Varsan), IFIP TC7/WG 7.2 International Working Conference, Constanta, Romania, September 10-14, 2002. Boston, MA: Kluwer Academic Publishers, 2003. pp. 89-100.
-
E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems. In: Analysis and Optimization of Differential Systems (Eds. V. Barbu, I. Lasiecka, D. Tiba, and C. Varsan), IFIP TC7/WG 7.2 International Working Conference, Constanta, Romania, September 10-14, 2002. Boston, MA: Kluwer Academic Publishers, 2003. pp. 89-100.
-
-
-
-
7
-
-
0034383447
-
Residual type a posteriori error estimates for elliptic obstacle problems
-
Z. Chen and R. H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. (2000) 84, No. 4, 527-548.
-
(2000)
Numer. Math
, vol.84
, Issue.4
, pp. 527-548
-
-
Chen, Z.1
Nochetto, R.H.2
-
8
-
-
27644481594
-
Adaptive wavelet methods for linear-quadratic elliptic control prob lems: Convergence rates
-
W. Dahmen and A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control prob lems: convergence rates. SIAM J. Control Optimization (2005) 43, No. 5, 1640-1675.
-
(2005)
SIAM J. Control Optimization
, vol.43
, Issue.5
, pp. 1640-1675
-
-
Dahmen, W.1
Kunoth, A.2
-
9
-
-
0009522795
-
Introduction to adaptive methods for differential equations
-
Ed. A. Iserles, Cambridge University Press
-
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations. In: Acta Numerica (Ed. A. Iserles), Cambridge University Press, 1995, pp. 105-158.
-
(1995)
Acta Numerica
, pp. 105-158
-
-
Eriksson, K.1
Estep, D.2
Hansbo, P.3
Johnson, C.4
-
11
-
-
84972502575
-
How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities
-
A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan (1977) 29, 615 -631.
-
(1977)
J. Math. Soc. Japan
, vol.29
, pp. 615-631
-
-
Haraux, A.1
-
12
-
-
0141645572
-
Adaptive finite element approximation for distributed elliptic optimal control problems
-
R. Li, W. Liu, H. Ma, and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optimization (2002) 41, No. 5, 1321-1349.
-
(2002)
SIAM J. Control Optimization
, vol.41
, Issue.5
, pp. 1321-1349
-
-
Li, R.1
Liu, W.2
Ma, H.3
Tang, T.4
-
13
-
-
0035733415
-
A posteriori error estimates for convex boundary control problems
-
W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. (2001) 39, No. 1, 73 -99.
-
(2001)
SIAM J. Numer. Anal
, vol.39
, Issue.1
, pp. 73-99
-
-
Liu, W.1
Yan, N.2
-
14
-
-
0019899110
-
Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems
-
K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optimization (1981) 8, 69-95.
-
(1981)
Appl. Math. Optimization
, vol.8
, pp. 69-95
-
-
Malanowski, K.1
-
15
-
-
0002958234
-
First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems
-
H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. (1979) 16, 98-110.
-
(1979)
Math. Program
, vol.16
, pp. 98-110
-
-
Maurer, H.1
Zowe, J.2
-
16
-
-
27744463727
-
Fully localized a posteriori error estimators and barrier sets for contact problems
-
R. H. Nochetto, K. G. Siebert, and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. (2005) 42, No. 5, 2118-2135.
-
(2005)
SIAM J. Numer. Anal
, vol.42
, Issue.5
, pp. 2118-2135
-
-
Nochetto, R.H.1
Siebert, K.G.2
Veeser, A.3
-
17
-
-
0003322639
-
Optimization. Algorithms and consistent approximations
-
E. Polak, Optimization. Algorithms and consistent approximations. Appl. Math. Sci. (1997), No. 124.
-
(1997)
Appl. Math. Sci
, Issue.124
-
-
Polak, E.1
-
18
-
-
4344574833
-
Error estimates for parabolic optimal control problems with control constraints
-
A. Rösch, Error estimates for parabolic optimal control problems with control constraints. ZAA (2004) 23, 353-376.
-
(2004)
ZAA
, vol.23
, pp. 353-376
-
-
Rösch, A.1
-
19
-
-
0035733517
-
Efficient and reliable a posteriori error estimators for elliptic obstacle problems
-
A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. (2001) 39, No. 1, 146-167.
-
(2001)
SIAM J. Numer. Anal
, vol.39
, Issue.1
, pp. 146-167
-
-
Veeser, A.1
|