메뉴 건너뛰기




Volumn 39, Issue 1, 2002, Pages 73-99

A posteriori error estimates for convex boundary control problems

Author keywords

A posteriori error analysis; Adaptive finite element methods; Finite element approximation; Optimal boundary control

Indexed keywords


EID: 0035733415     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036142999352187     Document Type: Article
Times cited : (128)

References (47)
  • 3
    • 0031102111 scopus 로고    scopus 로고
    • A posteriori error estimators in finite element analysis
    • M. AINSWORTH AND J.T. ODEN, A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142 (1997), pp. 1-88.
    • (1997) Comput. Methods Appl. Mech. Engrg. , vol.142 , pp. 1-88
    • Ainsworth, M.1    Oden, J.T.2
  • 5
    • 0021507437 scopus 로고
    • On the approximation of infinite optimisation problems with an application to optimal control problems
    • W. ALT, On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Optim., 12 (1984), pp. 15-27.
    • (1984) Appl. Math. Optim. , vol.12 , pp. 15-27
    • Alt, W.1
  • 6
    • 0024705324 scopus 로고
    • Convergence of finite element approximations to state constrained convex parabolic boundary control problems
    • W. ALT AND U. MACKENROTH, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optim., 27 (1989), pp. 718-736.
    • (1989) SIAM J. Control Optim. , vol.27 , pp. 718-736
    • Alt, W.1    Mackenroth, U.2
  • 8
    • 84966215690 scopus 로고
    • Some a posteriori error estimators for elliptic partial differential equations
    • R.E. BANK AND A. WEISER, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), pp. 283-301.
    • (1985) Math. Comp. , vol.44 , pp. 283-301
    • Bank, R.E.1    Weiser, A.2
  • 9
    • 0001883660 scopus 로고
    • A posteriori error estimators in finite element approximation of quasi-Newtonian flows
    • J. BARANGER AND H.E. AMRI, A posteriori error estimators in finite element approximation of quasi-Newtonian flows, M2AN Math. Model. Numer. Anal., 25 (1991), pp. 31-48.
    • (1991) M2AN Math. Model. Numer. Anal. , vol.25 , pp. 31-48
    • Baranger, J.1    Amri, H.E.2
  • 10
    • 0004021385 scopus 로고
    • Optimal control for variational inequalities
    • Pitman, London
    • V. BARBU, Optimal Control for Variational Inequalities, Res. Notes Math. 100, Pitman, London, 1984.
    • (1984) Res. Notes Math. , vol.100
    • Barbu, V.1
  • 11
    • 0013086439 scopus 로고
    • Finite element approximation of degenerate quasilinear elliptic and parabolic problems
    • Numerical Analysis
    • J.W. BARRETT AND W.B. LIU, Finite element approximation of degenerate quasilinear elliptic and parabolic problems, in Numerical Analysis 1993, Pitman Res. Notes. Math. Ser. 303, 1994, pp. 1-16.
    • (1993) Pitman Res. Notes. Math. Ser. , vol.303 , pp. 1-16
    • Barrett, J.W.1    Liu, W.B.2
  • 13
    • 0029778592 scopus 로고    scopus 로고
    • Constrained LQR problems in elliptic distributed control systems with point observations
    • Z.H. DING, L. JI, AND J.X. ZHOU, Constrained LQR problems in elliptic distributed control systems with point observations, SIAM J. Control Optim., 34 (1996), pp. 264-294.
    • (1996) SIAM J. Control Optim. , vol.34 , pp. 264-294
    • Ding, Z.H.1    Ji, L.2    Zhou, J.X.3
  • 14
    • 0001515319 scopus 로고
    • On the asymptotic exactness of error estimators for linear triangular finite elements
    • R.D. DURAN, M.A. MUSCHIETTI, AND R. RODRIGUEZ, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math., 59 (1991), pp. 107-127.
    • (1991) Numer. Math. , vol.59 , pp. 107-127
    • Duran, R.D.1    Muschietti, M.A.2    Rodriguez, R.3
  • 15
    • 0002491694 scopus 로고
    • Approximation of a class of optimal control problems with order of convergence estimates
    • F.S. FALK, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 28-47.
    • (1973) J. Math. Anal. Appl. , vol.44 , pp. 28-47
    • Falk, F.S.1
  • 16
    • 0000003984 scopus 로고
    • Error estimates for the approximation of a class of variational inequalities
    • R.S. FALK, Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28 (1974), pp. 963-971.
    • (1974) Math. Comp. , vol.28 , pp. 963-971
    • Falk, R.S.1
  • 17
    • 0008414510 scopus 로고
    • Approximation of an elliptic control problem by the finite element method
    • D. A. FRENCH AND J.T. KING, Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Optim., 12 (1991), pp. 299-315.
    • (1991) Numer. Funct. Anal. Optim. , vol.12 , pp. 299-315
    • French, D.A.1    King, J.T.2
  • 18
    • 0000238396 scopus 로고
    • On the approximation of the solution of an optimal control problem governed by an elliptic equation
    • T. GEVECI, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), pp. 313-328.
    • (1979) RAIRO Anal. Numer. , vol.13 , pp. 313-328
    • Geveci, T.1
  • 20
    • 0030150056 scopus 로고    scopus 로고
    • Finite-dimensional approximation of a class of constrained nonlinear optimal control problems
    • M.D. GUNZBURGER AND L.S. HOU, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), pp. 1001-1043.
    • (1996) SIAM J. Control Optim. , vol.34 , pp. 1001-1043
    • Gunzburger, M.D.1    Hou, L.S.2
  • 22
    • 21844496580 scopus 로고
    • Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls
    • L. HOU AND J.C. TURNER, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 71 (1995), pp. 289-315.
    • (1995) Numer. Math. , vol.71 , pp. 289-315
    • Hou, L.1    Turner, J.C.2
  • 23
    • 0000402458 scopus 로고
    • Adaptive finite element methods for the obstacle problem
    • C. JOHNSON, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci., 2 (1992), pp. 483-487.
    • (1992) Math. Models Methods Appl. Sci. , vol.2 , pp. 483-487
    • Johnson, C.1
  • 24
    • 0030128859 scopus 로고    scopus 로고
    • A posteriori error estimates for elliptic variational inequalities
    • R. KORNHUBER, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl., 31 (1996), pp. 49-60.
    • (1996) Comput. Math. Appl. , vol.31 , pp. 49-60
    • Kornhuber, R.1
  • 25
    • 0020133102 scopus 로고
    • Finite element approximation of parabolic time optimal control problems
    • G. KNOWLES, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), pp. 414-427.
    • (1982) SIAM J. Control Optim. , vol.20 , pp. 414-427
    • Knowles, G.1
  • 27
    • 0021431120 scopus 로고
    • Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions
    • I. LASIECKA, Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control Optim., 22 (1984), pp. 477-500.
    • (1984) SIAM J. Control Optim. , vol.22 , pp. 477-500
    • Lasiecka, I.1
  • 30
    • 0000170968 scopus 로고
    • Quasi-norm error bounds for the finite element approximation of degenerate quasilinear elliptic variational inequalities
    • W.B. LIU AND J.W. BARRETT, Quasi-norm error bounds for the finite element approximation of degenerate quasilinear elliptic variational inequalities, RAIRO Anal. Numer., 28 (1994), pp. 725-744.
    • (1994) RAIRO Anal. Numer. , vol.28 , pp. 725-744
    • Liu, W.B.1    Barrett, J.W.2
  • 31
    • 0001285605 scopus 로고
    • Quasi-norm error bounds for the finite element approximation of degenerate quasilinear parabolic variational inequalities
    • W.B. LIU AND J.W. BARRETT, Quasi-norm error bounds for the finite element approximation of degenerate quasilinear parabolic variational inequalities, Numer. Funct. Anal. Optim., 16 (1995), pp. 1309-1321.
    • (1995) Numer. Funct. Anal. Optim. , vol.16 , pp. 1309-1321
    • Liu, W.B.1    Barrett, J.W.2
  • 32
    • 0000769409 scopus 로고
    • Optimality conditions for strongly monotone variational inequalities
    • W.B, LIU AND J. RUBIO, Optimality conditions for strongly monotone variational inequalities, Appl. Math. Optim., 27 (1993), pp. 291-312.
    • (1993) Appl. Math. Optim. , vol.27 , pp. 291-312
    • Liu, W.B.1    Rubio, J.2
  • 33
    • 0043257650 scopus 로고    scopus 로고
    • Error estimates in the approximation of optimization problems
    • to appear
    • W.B. LIU AND D. TIBA, Error estimates in the approximation of optimization problems, Numer. Funct. Anal. Optim., to appear.
    • Numer. Funct. Anal. Optim.
    • Liu, W.B.1    Tiba, D.2
  • 34
    • 0043257649 scopus 로고    scopus 로고
    • A posteriori error analysis for convex distributed optimal control problems
    • to appear
    • W.B. LIU AND N.N. YAN, A posteriori error analysis for convex distributed optimal control problems, Adv. Comput. Math., to appear.
    • Adv. Comput. Math.
    • Liu, W.B.1    Yan, N.N.2
  • 35
    • 0019899110 scopus 로고
    • Convergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systems
    • K. MALANOWSKI, Convergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systems, Appl. Math. Optim., 8 (1982), pp. 69-95.
    • (1982) Appl. Math. Optim. , vol.8 , pp. 69-95
    • Malanowski, K.1
  • 36
    • 0001697550 scopus 로고
    • The Ritz-Galerkin procedure for parabolic control problems
    • R.S. MCKNIGHT AND W.E. BORSARGE, JR., The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11 (1973), pp. 510-524.
    • (1973) SIAM J. Control Optim. , vol.11 , pp. 510-524
    • McKnight, R.S.1    Borsarge W.E., Jr.2
  • 37
    • 0001140246 scopus 로고
    • Pointwise accuracy of a finite element method for nonlinear variational inequalities
    • R.H. NOCHETTO, Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54 (1989), pp. 601-618.
    • (1989) Numer. Math. , vol.54 , pp. 601-618
    • Nochetto, R.H.1
  • 40
    • 84966200902 scopus 로고
    • Finite element interpolation of nonsmooth functions satisfying boundary conditions
    • L.R. SCOTT AND S. ZHANG, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493.
    • (1990) Math. Comp. , vol.54 , pp. 483-493
    • Scott, L.R.1    Zhang, S.2
  • 42
    • 0003235264 scopus 로고
    • Optimal control of nonsmooth distributed parameter systems
    • Springer-Verlag, Berlin
    • D. TIBA, Optimal Control of Nonsmooth Distributed Parameter Systems, Lecture Notes Math. 1459, Springer-Verlag, Berlin, 1990.
    • (1990) Lecture Notes Math. , vol.1459
    • Tiba, D.1
  • 44
    • 0000197665 scopus 로고    scopus 로고
    • Error estimates for the discretization of state constrained convex control problems
    • D. TIBA AND F. TROLTZSCH, Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim., 17 (1996), pp. 1005-1028.
    • (1996) Numer. Funct. Anal. Optim. , vol.17 , pp. 1005-1028
    • Tiba, D.1    Troltzsch, F.2
  • 45
    • 0003009171 scopus 로고
    • Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems - Strong convergence of optimal control
    • F. TROLTZSCH, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems - strong convergence of optimal control, Appl. Math. Optim., 1994.
    • (1994) Appl. Math. Optim.
    • Troltzsch, F.1
  • 46
    • 34249971216 scopus 로고
    • A posteriori error estimators for the Stokes equations
    • R. VERFURTH, A posteriori error estimators for the Stokes equations, Numer. Math., 55 (1989), pp. 309-325.
    • (1989) Numer. Math. , vol.55 , pp. 309-325
    • Verfurth, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.