-
2
-
-
3543063529
-
LDORA: A novel laser communications receiver array architecture
-
D. M. Boroson, R. S. Bondurant, D. V. Murphy, "LDORA: A novel laser communications receiver array architecture," Proceedings of SPIE - The International Society for Optical Engineering, 5338, pp. 56-64, 2004.
-
(2004)
Proceedings of SPIE - The International Society for Optical Engineering
, vol.5338
, pp. 56-64
-
-
Boroson, D.M.1
Bondurant, R.S.2
Murphy, D.V.3
-
3
-
-
33644980662
-
781-Mbit/s photon-counting optical communications using a superconducting nanowire detector
-
B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M.L. Stevens, J. J. Carney, and S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, "781-Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett., 31, pp. 444-446, 2006.
-
(2006)
Opt. Lett
, vol.31
, pp. 444-446
-
-
Robinson, B.S.1
Kerman, A.J.2
Dauler, E.A.3
Barron, R.J.4
Caplan, D.O.5
Stevens, M.L.6
Carney, J.J.7
Hamilton, S.A.8
Yang, J.K.W.9
Berggren, K.K.10
-
4
-
-
33846225395
-
-
TDA Progress Report 42-70 Jet Propulsion Laboratory, California Institute of Technology
-
J. Katz, TDA Progress Report 42-70 (Jet Propulsion Laboratory, California Institute of Technology, 1982), pp. 95, http://tmo.jpl.nasa.gov/ ipn_progress_report/tda.cfm.
-
(1982)
, pp. 95
-
-
Katz, J.1
-
5
-
-
3142727300
-
-
K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, IEEE J. Quantum Electron. 40, pp. 900, 2004.
-
(2004)
IEEE J. Quantum Electron
, vol.40
, pp. 900
-
-
Gordon, K.J.1
Fernandez, V.2
Townsend, P.D.3
Buller, G.S.4
-
6
-
-
33846209775
-
-
paper TuA3.1
-
B. S. Robinson, D. O. Caplan, M. L. Stevens, R. J. Barron, E. A. Dauler, and S. A. Hamilton, in 2005 Digest of the LEOS Summer Topical Meetings (IEEE, 2005), paper TuA3.1.
-
(2005)
Digest of the LEOS Summer Topical Meetings (IEEE
-
-
Robinson, B.S.1
Caplan, D.O.2
Stevens, M.L.3
Barron, R.J.4
Dauler, E.A.5
Hamilton, S.A.6
-
7
-
-
31344463940
-
Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating
-
K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol'tsman, and K. K. Berggren, "Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating," Opt. Express, 14, pp. 527-534, 2006.
-
(2006)
Opt. Express
, vol.14
, pp. 527-534
-
-
Rosfjord, K.M.1
Yang, J.K.W.2
Dauler, E.A.3
Kerman, A.J.4
Anant, V.5
Voronov, B.6
Gol'tsman, G.N.7
Berggren, K.K.8
-
8
-
-
34547479355
-
Multi-element superconducting nanowire single photon detector
-
submitted for publication
-
E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol'tsman, and K. K. Berggren, "Multi-element superconducting nanowire single photon detector," IEEE Transactions on Applied Superconductivity, submitted for publication.
-
IEEE Transactions on Applied Superconductivity
-
-
Dauler, E.A.1
Robinson, B.S.2
Kerman, A.J.3
Yang, J.K.W.4
Rosfjord, K.M.5
Anant, V.6
Voronov, B.7
Gol'tsman, G.8
Berggren, K.K.9
-
9
-
-
33645159837
-
-
A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl. Phys. Lett., 88, pp. 111116-1 -3, 2006.
-
A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Appl. Phys. Lett., 88, pp. 111116-1 -3, 2006.
-
-
-
-
10
-
-
29244432185
-
The Blocking Probability of Geiger-Mode Avalanche Photodiodes
-
San Diego, CA, July-August
-
B. Moision, M. Srinivasan, J. Hamkins, "The Blocking Probability of Geiger-Mode Avalanche Photodiodes", Satellite Data Compression, Communications, and Archiving Conference, Optics and Photonics 2005, San Diego, CA, vol. 5889, p. 137-146, July-August 2005.
-
(2005)
Satellite Data Compression, Communications, and Archiving Conference, Optics and Photonics
, vol.5889
, pp. 137-146
-
-
Moision, B.1
Srinivasan, M.2
Hamkins, J.3
-
11
-
-
33846222590
-
-
The reset performance of an SNSPD depends on the nanowire length, its inductivity and the detection efficiency of the SNSPD as a function of current (see reference 8). These measured reset performance of the two SNSPD elements used in this work is consistent with the ∼ 0.5 dB difference in the saturated level of detected photons.
-
The reset performance of an SNSPD depends on the nanowire length, its inductivity and the detection efficiency of the SNSPD as a function of current (see reference 8). These measured reset performance of the two SNSPD elements used in this work is consistent with the ∼ 0.5 dB difference in the saturated level of detected photons.
-
-
-
-
12
-
-
33846220887
-
-
The correlated variations in the detected optical power were likely due to mechanical vibrations of the optical probe used to couple light onto the detector. The observed variation in the detected optical power in one detector due to the biasing and counting of the adjacent detector may be due to heating. This effect was only observed at high count rates
-
The correlated variations in the detected optical power were likely due to mechanical vibrations of the optical probe used to couple light onto the detector. The observed variation in the detected optical power in one detector due to the biasing and counting of the adjacent detector may be due to heating. This effect was only observed at high count rates.
-
-
-
|