-
1
-
-
0024716613
-
-
R. Rife, T. W. Thomas, D. W. Norberg, R. L. Fournier, F. G. Rinker, M. S. Bonomo, Environ. Prog. 1989, 8, 167.
-
(1989)
Environ. Prog
, vol.8
, pp. 167
-
-
Rife, R.1
Thomas, T.W.2
Norberg, D.W.3
Fournier, R.L.4
Rinker, F.G.5
Bonomo, M.S.6
-
2
-
-
0039129509
-
-
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
-
(1995)
Chem. Rev
, vol.95
, pp. 69
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
3
-
-
0028431373
-
-
a) A. J. Hoffmann, E. R. Carraway, M. R. Hoffmann, Environ. Sci. Technol. 1994, 28, 776.
-
(1994)
Environ. Sci. Technol
, vol.28
, pp. 776
-
-
Hoffmann, A.J.1
Carraway, E.R.2
Hoffmann, M.R.3
-
4
-
-
0028439371
-
-
b) E. R. Carraway, A. J. Hoffmann, M. R. Hoffmann, Environ. Sci. Technol. 1994, 28, 786.
-
(1994)
Environ. Sci. Technol
, vol.28
, pp. 786
-
-
Carraway, E.R.1
Hoffmann, A.J.2
Hoffmann, M.R.3
-
5
-
-
0032508584
-
-
K. Sato, M. Aoki, R. Noyori, Science 1998, 281, 1646.
-
(1998)
Science
, vol.281
, pp. 1646
-
-
Sato, K.1
Aoki, M.2
Noyori, R.3
-
6
-
-
0032672169
-
-
W.-J. Li, E.-W. Shi, W.-Z. Zhong, Z.-W. Yin. J. Cryst. Growth 1999, 203, 186.
-
(1999)
J. Cryst. Growth
, vol.203
, pp. 186
-
-
Li, W.-J.1
Shi, E.-W.2
Zhong, W.-Z.3
Yin, Z.-W.4
-
7
-
-
0348220799
-
-
a) J.-H. Choy, E. -S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, Adv. Mater. 2003, 15, 1911.
-
(2003)
Adv. Mater
, vol.15
, pp. 1911
-
-
Choy, J.-H.1
Jang, E.-S.2
Won, J.-H.3
Chung, J.-H.4
Jang, D.-J.5
Kim, Y.-W.6
-
8
-
-
0842268483
-
-
b) J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, Appl. Phys. Lett. 2004, 84, 287.
-
(2004)
Appl. Phys. Lett
, vol.84
, pp. 287
-
-
Choy, J.-H.1
Jang, E.-S.2
Won, J.-H.3
Chung, J.-H.4
Jang, D.-J.5
Kim, Y.-W.6
-
9
-
-
0037032311
-
-
Z. R. Tian, J. A. Voigt, B. McKenzie, M. J. McDermott, J. Am. Chem. Soc. 2002, 124, 12954.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 12954
-
-
Tian, Z.R.1
Voigt, J.A.2
McKenzie, B.3
McDermott, M.J.4
-
10
-
-
0344875971
-
-
Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2003, 2, 821.
-
(2003)
Nat. Mater
, vol.2
, pp. 821
-
-
Tian, Z.R.1
Voigt, J.A.2
Liu, J.3
McKenzie, B.4
McDermott, M.J.5
Rodriguez, M.A.6
Konishi, H.7
Xu, H.8
-
11
-
-
33846169486
-
-
Please see Supporting Information
-
Please see Supporting Information.
-
-
-
-
12
-
-
33846140891
-
-
After the normalization of activity data against the total surface area, the macrocrystalline rods and DB rods of ZnO seem to produce a larger amount of H2O2 than the nanostructured ZnO compounds. However, due to the very small surface area of the microcrystalline ZnO, a quantity more than 16 times larger is required in order to have the equivalent total surface area to that of nanocrystalline ZnO. In light of this, the observed higher activity of the microcrystalline zinc oxides in the surface-area-normalized plot (not shown in the text) should be interpreted as a result of their larger quantity rather than of their intrinsic high activity. Although normalization by the total surface area makes the amount of zinc oxide on the surface identical for all the materials under investigation, the quantity of zinc oxide in the bulk becomes much larger for the microcrystalline samples than for the nanocrystalline homologues. It is well known that holes and excited electro
-
2 than the nanostructured ZnO compounds. However, due to the very small surface area of the microcrystalline ZnO, a quantity more than 16 times larger is required in order to have the equivalent total surface area to that of nanocrystalline ZnO. In light of this, the observed higher activity of the microcrystalline zinc oxides in the surface-area-normalized plot (not shown in the text) should be interpreted as a result of their larger quantity rather than of their intrinsic high activity. Although normalization by the total surface area makes the amount of zinc oxide on the surface identical for all the materials under investigation, the quantity of zinc oxide in the bulk becomes much larger for the microcrystalline samples than for the nanocrystalline homologues. It is well known that holes and excited electrons can be formed not only on the surface but also in the bulk, and both can take part in photocatalysis.
-
-
-
-
13
-
-
0035869025
-
-
R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 2001, 105.1984.
-
(1984)
J. Phys. Chem. B
, vol.2001
, pp. 105
-
-
Sun, R.-D.1
Nakajima, A.2
Fujishima, A.3
Watanabe, T.4
Hashimoto, K.5
|