-
1
-
-
0038346448
-
Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems
-
Abgrall R., and Mezine M. Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems. J. Comput. Phys. 188 1 (2003) 16-55
-
(2003)
J. Comput. Phys.
, vol.188
, Issue.1
, pp. 16-55
-
-
Abgrall, R.1
Mezine, M.2
-
2
-
-
4644342716
-
A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
-
Audusse E., Bouchut F., Bristeau M.-O., Klein R., and Perthame B. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comp. 25 (2004) 205-206
-
(2004)
SIAM J. Sci. Comp.
, vol.25
, pp. 205-206
-
-
Audusse, E.1
Bouchut, F.2
Bristeau, M.-O.3
Klein, R.4
Perthame, B.5
-
3
-
-
0030640667
-
On WAF-type schemes for multidimensional hyperbolic conservation laws
-
Billet S., and Toro E.F. On WAF-type schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 130 (1997) 1-24
-
(1997)
J. Comput. Phys.
, vol.130
, pp. 1-24
-
-
Billet, S.1
Toro, E.F.2
-
5
-
-
4644292071
-
Frontal geostrophic adjustment and nonlinear-wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution numerical simulations
-
Bouchut F., LeSommer J., and Zeitlin V. Frontal geostrophic adjustment and nonlinear-wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution numerical simulations. J. Fluid Mech. 514 (2004) 35-63
-
(2004)
J. Fluid Mech.
, vol.514
, pp. 35-63
-
-
Bouchut, F.1
LeSommer, J.2
Zeitlin, V.3
-
6
-
-
26844455510
-
Multidimensional upwind methods for hyperbolic conservation laws
-
Colella P. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 171-200
-
(1990)
J. Comput. Phys.
, vol.87
, pp. 171-200
-
-
Colella, P.1
-
7
-
-
0037054350
-
A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws
-
Csík A., Ricchiuto M., and Deconinck H. A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys. 179 1 (2002) 286-312
-
(2002)
J. Comput. Phys.
, vol.179
, Issue.1
, pp. 286-312
-
-
Csík, A.1
Ricchiuto, M.2
Deconinck, H.3
-
8
-
-
0027552804
-
A multidimensional generalization of Roe's flux difference splitter for the Euler equations
-
Deconinck H., Roe P., and Struijs R. A multidimensional generalization of Roe's flux difference splitter for the Euler equations. Comput. Fluids 22 2-3 (1993) 215-222
-
(1993)
Comput. Fluids
, vol.22
, Issue.2-3
, pp. 215-222
-
-
Deconinck, H.1
Roe, P.2
Struijs, R.3
-
9
-
-
0000471333
-
Multidimensional upwinding, Part II Decomposition of the Euler equations into advection equations
-
Fey M. Multidimensional upwinding, Part II Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181-199
-
(1998)
J. Comput. Phys.
, vol.143
, pp. 181-199
-
-
Fey, M.1
-
10
-
-
0037404907
-
Some approximate Godunov schemes to compute shallow-water equations with topography
-
Gallouët T., Hérard J.-M., and Seguin N. Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479-513
-
(2003)
Comput. Fluids
, vol.32
, pp. 479-513
-
-
Gallouët, T.1
Hérard, J.-M.2
Seguin, N.3
-
11
-
-
0036191780
-
A high resolution tidal model for the area around The Lofoten Islands, northern Norway
-
Gjevik B., Moe H., and Ommundsen A. A high resolution tidal model for the area around The Lofoten Islands, northern Norway. Continental Shelf Res. 22 1 (2002) 485-504
-
(2002)
Continental Shelf Res.
, vol.22
, Issue.1
, pp. 485-504
-
-
Gjevik, B.1
Moe, H.2
Ommundsen, A.3
-
12
-
-
1542576141
-
A well-balanced scheme for numerical processing of source terms in hyperbolic equations
-
Greenberg J.M., and LeRoux A.-Y. A well-balanced scheme for numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16
-
(1996)
SIAM J. Numer. Anal.
, vol.33
, pp. 1-16
-
-
Greenberg, J.M.1
LeRoux, A.-Y.2
-
13
-
-
0035537697
-
A steady-state capturing method for hyperbolic systems with geometrical source terms
-
2AN, Math. Model. Numer. Anal. 35 4 (2001) 631-646
-
(2001)
2AN, Math. Model. Numer. Anal.
, vol.35
, Issue.4
, pp. 631-646
-
-
Jin, S.1
-
14
-
-
85189847644
-
-
Klein R. An applied mathematical view of meteorological modelling, in: J.M. Hill, R. Moore (Eds.), Proceedings ICAM 2003, 2003, pp. 227-270.
-
-
-
-
15
-
-
33846179075
-
An evolution Galerkin scheme for the shallow water magneto-hydro-dynamic (SMHD) equations in two space dimensions
-
Kröger T., and Lukáčová-Medvid'ová M. An evolution Galerkin scheme for the shallow water magneto-hydro-dynamic (SMHD) equations in two space dimensions. J. Comput. Phys. 206 (2005) 122-149
-
(2005)
J. Comput. Phys.
, vol.206
, pp. 122-149
-
-
Kröger, T.1
Lukáčová-Medvid'ová, M.2
-
16
-
-
11244297851
-
On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws
-
Kröger T., and Noelle S. On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws. Math. Model. Numer. Anal. 38 (2004) 989-1009
-
(2004)
Math. Model. Numer. Anal.
, vol.38
, pp. 989-1009
-
-
Kröger, T.1
Noelle, S.2
-
18
-
-
85189850357
-
-
A. Kurganov, G. Petrova, B. Popov, Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comp. (accepted).
-
-
-
-
19
-
-
0000308880
-
Wave propagation algorithms for multi-dimensional hyperbolic systems
-
LeVeque R.J. Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327-353
-
(1997)
J. Comput. Phys.
, vol.131
, pp. 327-353
-
-
LeVeque, R.J.1
-
20
-
-
0001315315
-
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave propagation algorithm
-
LeVeque R.J. Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave propagation algorithm. J. Comput. Phys. 146 (1998) 346-365
-
(1998)
J. Comput. Phys.
, vol.146
, pp. 346-365
-
-
LeVeque, R.J.1
-
21
-
-
0041428206
-
On the artificial compression method for second order non-oscillatory central difference schemes for systems of conservation laws
-
Lie K.-A., and Noelle S. On the artificial compression method for second order non-oscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comp. 24 4 (2003) 1157-1174
-
(2003)
SIAM J. Sci. Comp.
, vol.24
, Issue.4
, pp. 1157-1174
-
-
Lie, K.-A.1
Noelle, S.2
-
22
-
-
85189852286
-
-
M. Lukáčová-Medvid'ová, Multidimensional bicharacteristics finite volume methods for the shallow water equations, in: R. Hérbin, D. Kröner (Eds.), Finite Volumes for Complex Applications, Hermes, 2002, pp. 389-397.
-
-
-
-
23
-
-
0034409204
-
Evolution Galerkin methods for hyperbolic systems in two space dimensions
-
Lukáčová-Medvid'ová M., Morton K.W., and Warnecke G. Evolution Galerkin methods for hyperbolic systems in two space dimensions. MathComp. 69 (2000) 1355-1384
-
(2000)
MathComp.
, vol.69
, pp. 1355-1384
-
-
Lukáčová-Medvid'ová, M.1
Morton, K.W.2
Warnecke, G.3
-
24
-
-
85189851218
-
-
M. Lukáčová-Medvid'ová, K.W. Morton, G. Warnecke, On high-resolution finite volume evolution Galerkin schemes for genuinely multidimensional hyperbolic conservation laws, in: Onate et al. (Eds.), European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, CIMNE 2000, pp. 1-14.
-
-
-
-
25
-
-
0037201223
-
Finite volume evolution Galerkin methods for Euler equations of gas dynamics
-
Lukáčová-Medvid'ová M., Morton K.W., and Warnecke G. Finite volume evolution Galerkin methods for Euler equations of gas dynamics. Int. J. Numer. Meth. Fluids 40 3-4 (2002) 425-434
-
(2002)
Int. J. Numer. Meth. Fluids
, vol.40
, Issue.3-4
, pp. 425-434
-
-
Lukáčová-Medvid'ová, M.1
Morton, K.W.2
Warnecke, G.3
-
26
-
-
0037059268
-
Finite volume evolution Galerkin methods for nonlinear hyperbolic systems
-
Lukáčová-Medvid'ová M., Saibertová J., and Warnecke G. Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comput. Phys. 183 (2002) 533-562
-
(2002)
J. Comput. Phys.
, vol.183
, pp. 533-562
-
-
Lukáčová-Medvid'ová, M.1
Saibertová, J.2
Warnecke, G.3
-
27
-
-
11244345869
-
Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems
-
Lukáčová-Medvid'ová M., Morton K.W., and Warnecke G. Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems. SIAM J. Sci. Comput. 26 1 (2004) 1-30
-
(2004)
SIAM J. Sci. Comput.
, vol.26
, Issue.1
, pp. 1-30
-
-
Lukáčová-Medvid'ová, M.1
Morton, K.W.2
Warnecke, G.3
-
28
-
-
85189844936
-
-
M. Lukáčová-Medvid'ová, G. Warnecke, Y. Zahaykah, On the stability of the evolution Galerkin schemes applied to a two-dimensional wave equation system, SIAM J. Numer. Anal. (accepted).
-
-
-
-
29
-
-
85189849979
-
-
M. Lukáčová-Medvid'ová, G. Warnecke, Y. Zahaykah, Finite volume evolution Galerkin schemes for three-dimensional wave equation system (submitted).
-
-
-
-
30
-
-
0000783988
-
The MOT-ICE: a new high-resolution wave-propagation algorithm for multi-dimensional systems of conservative laws based on Fey's method of transport
-
Noelle S. The MOT-ICE: a new high-resolution wave-propagation algorithm for multi-dimensional systems of conservative laws based on Fey's method of transport. J. Comput. Phys. 164 (2000) 283-334
-
(2000)
J. Comput. Phys.
, vol.164
, pp. 283-334
-
-
Noelle, S.1
-
31
-
-
32644433341
-
Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows
-
Noelle S., Pankratz N., Puppo G., and Natvig J. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474-499
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 474-499
-
-
Noelle, S.1
Pankratz, N.2
Puppo, G.3
Natvig, J.4
-
33
-
-
0021513424
-
High-resolution schemes using flux limiters for hyperbolic conservation-laws
-
Sweby P.K. High-resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM J. Numer. Anal. 21 (1984) 995-1011
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 995-1011
-
-
Sweby, P.K.1
-
34
-
-
19044370217
-
High order finite difference WENO schemes with the exact conservation property for the shallow water equations
-
Xing Y., and Shu C.W. High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208 (2005) 206-227
-
(2005)
J. Comput. Phys.
, vol.208
, pp. 206-227
-
-
Xing, Y.1
Shu, C.W.2
|