메뉴 건너뛰기




Volumn 97, Issue 2, 2007, Pages 159-174

Faber-Krahn type inequalities for trees

Author keywords

Degree sequence; Dirichlet eigenvalue problem; Faber Krahn type inequality; Graph Laplacian; Tree

Indexed keywords


EID: 33846137645     PISSN: 00958956     EISSN: 10960902     Source Type: Journal    
DOI: 10.1016/j.jctb.2006.04.005     Document Type: Article
Times cited : (15)

References (15)
  • 2
    • 0040822239 scopus 로고    scopus 로고
    • Inégalités isopérimétriques de Faber-Krahn et conséquences
    • Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Luminy, France, 12-18 juillet, 1992. Besse A.L. (Ed), Soc. Math. France, Paris
    • Carron G. Inégalités isopérimétriques de Faber-Krahn et conséquences. In: Besse A.L. (Ed). Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Luminy, France, 12-18 juillet, 1992. Sémin. Congr. vol. 1 (1996), Soc. Math. France, Paris 205-232
    • (1996) Sémin. Congr. , vol.1 , pp. 205-232
    • Carron, G.1
  • 3
    • 0031534574 scopus 로고    scopus 로고
    • Inégalités de Faber-Krahn et inclusion de Sobolev-Orlicz
    • Carron G. Inégalités de Faber-Krahn et inclusion de Sobolev-Orlicz. Potential Anal. 7 2 (1997) 555-575
    • (1997) Potential Anal. , vol.7 , Issue.2 , pp. 555-575
    • Carron, G.1
  • 8
    • 33846120692 scopus 로고    scopus 로고
    • Y.C. de Verdière, Le trou spectral des graphes et leurs propriétés d'expansion, Séminaire de théorie spectral et géométrie, 1993-1994, pp. 51-68
  • 9
    • 84974003380 scopus 로고
    • Some geometric aspects of graphs and their eigenfunctions
    • Friedman J. Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69 3 (1993) 487-525
    • (1993) Duke Math. J. , vol.69 , Issue.3 , pp. 487-525
    • Friedman, J.1
  • 10
    • 0003780715 scopus 로고
    • Addison-Wesley, Reading, MA
    • Harary F. Graph Theory (1969), Addison-Wesley, Reading, MA
    • (1969) Graph Theory
    • Harary, F.1
  • 11
    • 33747321635 scopus 로고    scopus 로고
    • The first eigenvalue of the discrete Dirichlet problem for a graph
    • Katsuda A., and Urakawa H. The first eigenvalue of the discrete Dirichlet problem for a graph. J. Combin. Math. Combin. Comput. 27 (1998) 217-225
    • (1998) J. Combin. Math. Combin. Comput. , vol.27 , pp. 217-225
    • Katsuda, A.1    Urakawa, H.2
  • 12
    • 0033465442 scopus 로고    scopus 로고
    • The Faber-Krahn type isoperimetric inequalities for a graph
    • Katsuda A., and Urakawa H. The Faber-Krahn type isoperimetric inequalities for a graph. Tohoku Math. J. (2) 51 2 (1999) 267-281
    • (1999) Tohoku Math. J. (2) , vol.51 , Issue.2 , pp. 267-281
    • Katsuda, A.1    Urakawa, H.2
  • 13
    • 0031285887 scopus 로고    scopus 로고
    • A Faber-Krahn-type inequality for regular trees
    • Leydold J. A Faber-Krahn-type inequality for regular trees. Geom. Funct. Anal. 7 2 (1997) 364-378
    • (1997) Geom. Funct. Anal. , vol.7 , Issue.2 , pp. 364-378
    • Leydold, J.1
  • 14
    • 33750726808 scopus 로고    scopus 로고
    • The geometry of regular trees with the Faber-Krahn property
    • Leydold J. The geometry of regular trees with the Faber-Krahn property. Discrete Math. 245 1-3 (2002) 155-172
    • (2002) Discrete Math. , vol.245 , Issue.1-3 , pp. 155-172
    • Leydold, J.1
  • 15
    • 0009188159 scopus 로고    scopus 로고
    • Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees
    • Pruss A.R. Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees. Duke Math. J. 91 3 (1998) 463-514
    • (1998) Duke Math. J. , vol.91 , Issue.3 , pp. 463-514
    • Pruss, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.