메뉴 건너뛰기




Volumn 245, Issue 1-3, 2002, Pages 155-172

The geometry of regular trees with the Faber-Krahn property

Author keywords

Dirichlet eigenvalue problem; Faber Krahn inequality; Graph laplacian; Regular tree

Indexed keywords


EID: 33750726808     PISSN: 0012365X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0012-365X(01)00139-X     Document Type: Article
Times cited : (6)

References (6)
  • 2
    • 0001128801 scopus 로고
    • Multiplicités des valeurs propres laplaciens discrète et laplaciens continus
    • Y. Colin de Verdière, Multiplicités des valeurs propres laplaciens discrète et laplaciens continus, Rend. Mat. 13 (1993) 433-460.
    • (1993) Rend. Mat. , vol.13 , pp. 433-460
    • De Colin Verdière, Y.1
  • 4
    • 84974003380 scopus 로고
    • Some geometric aspects of graphs and their eigenfunctions
    • J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (3) (1993) 487-525.
    • (1993) Duke Math. J. , vol.69 , Issue.3 , pp. 487-525
    • Friedman, J.1
  • 5
    • 0031285887 scopus 로고    scopus 로고
    • A Faber-Krahn-type inequality for regular trees
    • J. Leydold, A Faber-Krahn-type inequality for regular trees, GAFA, Geom. Funct. Anal. 7 (2) (1997) 364-378.
    • (1997) GAFA, Geom. Funct. Anal. , vol.7 , Issue.2 , pp. 364-378
    • Leydold, J.1
  • 6
    • 0009188159 scopus 로고    scopus 로고
    • Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees
    • A.R. Pruss, Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees, Duke Math. J. 91 (3) (1998) 463-514.
    • (1998) Duke Math. J. , vol.91 , Issue.3 , pp. 463-514
    • Pruss, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.