-
1
-
-
0001125798
-
Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods
-
Amini S., and Kirkup S.M. Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods. J. Comput. Phys. 118 (1995) 208-221
-
(1995)
J. Comput. Phys.
, vol.118
, pp. 208-221
-
-
Amini, S.1
Kirkup, S.M.2
-
2
-
-
0031632570
-
Numerically absorbing boundary conditions for quantum evolution equations
-
Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6 (1998) 313-319
-
(1998)
VLSI Design
, vol.6
, pp. 313-319
-
-
Arnold, A.1
-
3
-
-
0011217467
-
Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics
-
Arnold A., and Ehrhardt M. Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comput. Phys. 145 (1998) 611-638
-
(1998)
J. Comput. Phys.
, vol.145
, pp. 611-638
-
-
Arnold, A.1
Ehrhardt, M.2
-
4
-
-
0000069637
-
Higher order paraxial wave equation approximations in heterogeneous media
-
Bamberger A., Engquist B., Halpern L., and Joly P. Higher order paraxial wave equation approximations in heterogeneous media. SIAM J. Appl. Math. 48 (1988) 129-154
-
(1988)
SIAM J. Appl. Math.
, vol.48
, pp. 129-154
-
-
Bamberger, A.1
Engquist, B.2
Halpern, L.3
Joly, P.4
-
5
-
-
0001262382
-
Implementation of transparent boundaries for numerical solution of the Schrödinger equation
-
Baskakov V.A., and Popov A.V. Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14 (1991) 123-128
-
(1991)
Wave Motion
, vol.14
, pp. 123-128
-
-
Baskakov, V.A.1
Popov, A.V.2
-
6
-
-
28044459877
-
A perfectly matched layer for the absorption of electromagnetic waves
-
Bérenger J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185-200
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 185-200
-
-
Bérenger, J.-P.1
-
7
-
-
33846113314
-
-
H.K. Brock, The AESD parabolic equation model, Report TN-12, Naval Ocean Research and Development Activity, Stennis Space Center, MS, 1978.
-
-
-
-
8
-
-
0010002746
-
Non-local boundary conditions for high-order parabolic equation algorithms
-
Brooke G.H., and Thomson D.J. Non-local boundary conditions for high-order parabolic equation algorithms. Wave Motion 31 (2000) 117-129
-
(2000)
Wave Motion
, vol.31
, pp. 117-129
-
-
Brooke, G.H.1
Thomson, D.J.2
-
9
-
-
0001095190
-
Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure
-
Claerbout J.F. Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure. Geophysics 35 (1970) 407-418
-
(1970)
Geophysics
, vol.35
, pp. 407-418
-
-
Claerbout, J.F.1
-
10
-
-
0027341189
-
A split-step Padé solution for the parabolic equation method
-
Collins M.D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Amer. 93 (1993) 1736-1742
-
(1993)
J. Acoust. Soc. Amer.
, vol.93
, pp. 1736-1742
-
-
Collins, M.D.1
-
12
-
-
33846109860
-
-
2-linear half-space, J. Acoust. Soc. Amer., submitted for publication.
-
-
-
-
13
-
-
33846093930
-
-
G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, R. Oldenburg Verlag, 3. Auflage, 1967.
-
-
-
-
14
-
-
33846083161
-
-
M. Ehrhardt, Discrete transparent boundary conditions for wide angle parabolic equations forr non-vanishing starting fields, Preprint No. 221 of the DFG Research Center MATHEON, Berlin, March 2005, J. Comput. Acoust., submitted for publication.
-
-
-
-
15
-
-
0011764695
-
Discrete transparent boundary conditions for the Schrödinger equation
-
Ehrhardt M., and Arnold A. Discrete transparent boundary conditions for the Schrödinger equation. Riv. Mat. Univ. Parma 6 (2001) 57-108
-
(2001)
Riv. Mat. Univ. Parma
, vol.6
, pp. 57-108
-
-
Ehrhardt, M.1
Arnold, A.2
-
16
-
-
33846037757
-
-
M. Ehrhardt, A. Arnold, Discrete transparent boundary conditions for wide angle parabolic equations: fast calculation and approximation, in: Proceedings of the Seventh European Conference on Underwater Acoustics, July 3-8, 2004, Delft, The Netherlands, 2004, pp. 9-14.
-
-
-
-
17
-
-
4444373625
-
Solutions to the discrete Airy equation: application to parabolic equation calculations
-
Ehrhardt M., and Mickens R.E. Solutions to the discrete Airy equation: application to parabolic equation calculations. J. Comput. Appl. Math. 172 (2004) 183-206
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 183-206
-
-
Ehrhardt, M.1
Mickens, R.E.2
-
18
-
-
27344459965
-
Fast calculation of energy and mass preserving solutions of Schrödinger-Poisson systems on unbounded domains
-
Ehrhardt M., and Zisowsky A. Fast calculation of energy and mass preserving solutions of Schrödinger-Poisson systems on unbounded domains. J. Comput. Appl. Math. 187 (2006) 1-28
-
(2006)
J. Comput. Appl. Math.
, vol.187
, pp. 1-28
-
-
Ehrhardt, M.1
Zisowsky, A.2
-
19
-
-
0018105155
-
Light propagation in graded-index optical fibers
-
Feit M.D., and Fleck J.A. Light propagation in graded-index optical fibers. Appl. Opt. 17 (1978) 3990-3997
-
(1978)
Appl. Opt.
, vol.17
, pp. 3990-3997
-
-
Feit, M.D.1
Fleck, J.A.2
-
20
-
-
33846067631
-
-
L. Fishman, One-way wave equation modeling in two-way wave propagation problems, in: B. Nilsson, L. Fishman (Eds.), Mathematical Modelling of Wave Phenomena 2002, Mathematical Modelling in Physics, Engineering and Cognitive Sciences, vol. 7, Växjö University Press, Växjö, Sweden, 2004, pp. 91-111.
-
-
-
-
21
-
-
0031237261
-
Uniform high-frequency approximations of the square-root Helmholtz operator symbol
-
Fishman L., Gautesen A.K., and Sun Z. Uniform high-frequency approximations of the square-root Helmholtz operator symbol. Wave Motion 26 (1997) 127-161
-
(1997)
Wave Motion
, vol.26
, pp. 127-161
-
-
Fishman, L.1
Gautesen, A.K.2
Sun, Z.3
-
22
-
-
0016783078
-
Calculations of the effect of internal waves on oceanic sound transmission
-
Flatté S.M., and Tappert F.D. Calculations of the effect of internal waves on oceanic sound transmission. J. Acoust. Soc. Amer. 58 (1975) 1151-1159
-
(1975)
J. Acoust. Soc. Amer.
, vol.58
, pp. 1151-1159
-
-
Flatté, S.M.1
Tappert, F.D.2
-
23
-
-
0346983828
-
Transparent boundary conditions for a wide-angle approximation of the one-way Helmholtz equation
-
Friese T., Schmidt F., and Yevick D. Transparent boundary conditions for a wide-angle approximation of the one-way Helmholtz equation. J. Comput. Phys. 165 (2000) 645-659
-
(2000)
J. Comput. Phys.
, vol.165
, pp. 645-659
-
-
Friese, T.1
Schmidt, F.2
Yevick, D.3
-
24
-
-
0030286184
-
Solutions of 3D-Laplace and Helmholtz equations in exterior domains using hp infinite elements
-
Gerdes K., and Demkovicz L. Solutions of 3D-Laplace and Helmholtz equations in exterior domains using hp infinite elements. Comput. Methods Appl. Mech. Eng. 137 (1996) 239-273
-
(1996)
Comput. Methods Appl. Mech. Eng.
, vol.137
, pp. 239-273
-
-
Gerdes, K.1
Demkovicz, L.2
-
25
-
-
0033076237
-
Reciprocity and energy conservation within the parabolic approximation
-
Godin O.A. Reciprocity and energy conservation within the parabolic approximation. Wave Motion 29 (1999) 175-194
-
(1999)
Wave Motion
, vol.29
, pp. 175-194
-
-
Godin, O.A.1
-
26
-
-
33846075703
-
-
W.B. Gragg, G.D. Johnson, The Laurent-Padé Table, Information Processing, vol. 74, North-Holland, Amsterdam, 1974, pp. 632-637.
-
-
-
-
27
-
-
0021638831
-
The rational approximation to the acoustic wave equation with bottom interaction
-
Greene R.R. The rational approximation to the acoustic wave equation with bottom interaction. J. Acoust. Soc. Amer. 76 (1984) 1764-1773
-
(1984)
J. Acoust. Soc. Amer.
, vol.76
, pp. 1764-1773
-
-
Greene, R.R.1
-
29
-
-
0001668244
-
Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations
-
Hardin R.H., and Tappert F.D. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev. 15 (1973) 423
-
(1973)
SIAM Rev.
, vol.15
, pp. 423
-
-
Hardin, R.H.1
Tappert, F.D.2
-
30
-
-
0001315174
-
Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation
-
Hellums J.R., and Frensley W.R. Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. Phys. Rev. B 49 (1994) 2904-2906
-
(1994)
Phys. Rev. B
, vol.49
, pp. 2904-2906
-
-
Hellums, J.R.1
Frensley, W.R.2
-
31
-
-
0004129715
-
-
AIP Press, New York
-
Jensen F.B., Kuperman W.A., Porter M.B., and Schmidt H. Computational Ocean Acoustics (1994), AIP Press, New York
-
(1994)
Computational Ocean Acoustics
-
-
Jensen, F.B.1
Kuperman, W.A.2
Porter, M.B.3
Schmidt, H.4
-
32
-
-
33846111298
-
-
N.A. Kampanis, A finite element method for the parabolic equation in aeroacoustics coupled with a nonlocal boundary condition for an inhomogeneous atmosphere, J. Comput. Acoust., accepted for publication.
-
-
-
-
33
-
-
0000271460
-
Exact non-reflecting boundary conditions
-
Keller J.B., and Givoli D. Exact non-reflecting boundary conditions. J. Comput. Phys. 82 (1989) 172-192
-
(1989)
J. Comput. Phys.
, vol.82
, pp. 172-192
-
-
Keller, J.B.1
Givoli, D.2
-
35
-
-
0023533509
-
Ocean acoustic propagation by finite difference methods
-
Lee D., and McDaniel S.T. Ocean acoustic propagation by finite difference methods. Comput. Math. Appl. 14 (1987) 305-423
-
(1987)
Comput. Math. Appl.
, vol.14
, pp. 305-423
-
-
Lee, D.1
McDaniel, S.T.2
-
36
-
-
0003368479
-
Solution of propagation of electromagnetic waves along the earth's surface by the method of parabolic equations
-
Leontovich M.A., and Fock V.A. Solution of propagation of electromagnetic waves along the earth's surface by the method of parabolic equations. J. Phys. USSR 10 (1946) 13-23
-
(1946)
J. Phys. USSR
, vol.10
, pp. 13-23
-
-
Leontovich, M.A.1
Fock, V.A.2
-
37
-
-
33846053123
-
-
M.F. Levy, Parabolic equation models for electromagnetic wave propagation, IEE Electromagnetic Waves Series, vol. 45, 2000.
-
-
-
-
38
-
-
0345761226
-
Exact one-way methods for acoustic waveguides
-
Lu Y.Y. Exact one-way methods for acoustic waveguides. Math. Comput. Simulation 50 (1999) 377-391
-
(1999)
Math. Comput. Simulation
, vol.50
, pp. 377-391
-
-
Lu, Y.Y.1
-
39
-
-
0029660264
-
The Riccati method for the Helmholtz equation
-
Lu Y.Y., and McLaughlin J.R. The Riccati method for the Helmholtz equation. J. Acoust. Soc. Amer. 100 (1996) 1432-1446
-
(1996)
J. Acoust. Soc. Amer.
, vol.100
, pp. 1432-1446
-
-
Lu, Y.Y.1
McLaughlin, J.R.2
-
40
-
-
33846067632
-
-
Y.Y. Lu, J. Zhu, Perfectly matched layer for acoustic waveguide modeling-Benchmark calculations and perturbation analysis, submitted for publication.
-
-
-
-
41
-
-
0025847997
-
A generalized impedance method for application of parabolic approximation to underwater acoustics
-
Marcus S.W. A generalized impedance method for application of parabolic approximation to underwater acoustics. J. Acoust. Soc. Amer. 90 (1991) 391-398
-
(1991)
J. Acoust. Soc. Amer.
, vol.90
, pp. 391-398
-
-
Marcus, S.W.1
-
42
-
-
0011569744
-
The pseudo-differential approach to finite differences revisited
-
Markowich P., and Poupaud F. The pseudo-differential approach to finite differences revisited. Calcolo 36 (1999) 161-186
-
(1999)
Calcolo
, vol.36
, pp. 161-186
-
-
Markowich, P.1
Poupaud, F.2
-
43
-
-
33846055388
-
-
B. Mayfield, Non-local boundary conditions for the Schrödinger equation, Ph.D. Thesis, University of Rhode Island, Providence, RI, 1989.
-
-
-
-
44
-
-
0020116515
-
A finite-difference treatment of interface conditions for the parabolic wave equation: the horizontal interface
-
McDaniel S.T., and Lee D. A finite-difference treatment of interface conditions for the parabolic wave equation: the horizontal interface. J. Acoust. Soc. Amer. 71 (1982) 855-858
-
(1982)
J. Acoust. Soc. Amer.
, vol.71
, pp. 855-858
-
-
McDaniel, S.T.1
Lee, D.2
-
45
-
-
9644307911
-
Exact discrete non-local boundary conditions for higher-order Padé parabolic equations
-
Mikhin D. Exact discrete non-local boundary conditions for higher-order Padé parabolic equations. J. Acoust. Soc. Amer. 116 (2004) 2864-2875
-
(2004)
J. Acoust. Soc. Amer.
, vol.116
, pp. 2864-2875
-
-
Mikhin, D.1
-
46
-
-
0031058871
-
Rational square-root approximations for parabolic equation algorithms
-
Milinazzo F.A., Zala C.A., and Brooke G.H. Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Amer. 101 (1997) 760-766
-
(1997)
J. Acoust. Soc. Amer.
, vol.101
, pp. 760-766
-
-
Milinazzo, F.A.1
Zala, C.A.2
Brooke, G.H.3
-
47
-
-
33846086020
-
-
J.S. Papadakis, Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics, NORDA Parabolic Equation Workshop, NORDA Technical Note 143, 1982.
-
-
-
-
48
-
-
0011188824
-
Impedance bottom boundary conditions for the parabolic-type approximations in underwater acoustics
-
Vichnevetsky R., Knight D., and Richter G. (Eds), IMACS, New Brunswick, NJ
-
Papadakis J.S. Impedance bottom boundary conditions for the parabolic-type approximations in underwater acoustics. In: Vichnevetsky R., Knight D., and Richter G. (Eds). Advances in Computer Methods for Partial Differential Equations VII (1992), IMACS, New Brunswick, NJ 585-590
-
(1992)
Advances in Computer Methods for Partial Differential Equations VII
, pp. 585-590
-
-
Papadakis, J.S.1
-
49
-
-
0001865630
-
Exact nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics
-
Papadakis J.S. Exact nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics. J. Comput. Acoust. 2 (1994) 83-98
-
(1994)
J. Comput. Acoust.
, vol.2
, pp. 83-98
-
-
Papadakis, J.S.1
-
50
-
-
0010945360
-
Discrete transparent boundary conditions for the numerical solution of Fresnel's equation
-
Schmidt F., and Deuflhard P. Discrete transparent boundary conditions for the numerical solution of Fresnel's equation. Comput. Math. Appl. 29 (1995) 53-76
-
(1995)
Comput. Math. Appl.
, vol.29
, pp. 53-76
-
-
Schmidt, F.1
Deuflhard, P.2
-
51
-
-
0345816843
-
Transparent boundary conditions for split-step Padé approximations of the one-way Helmholtz equation
-
Schmidt F., Friese T., and Yevick S. Transparent boundary conditions for split-step Padé approximations of the one-way Helmholtz equation. J. Comput. Phys. 170 (2001) 696-719
-
(2001)
J. Comput. Phys.
, vol.170
, pp. 696-719
-
-
Schmidt, F.1
Friese, T.2
Yevick, S.3
-
52
-
-
0030260855
-
On the reference wave vector of paraxial Helmholtz equations
-
Schmidt F., and März R. On the reference wave vector of paraxial Helmholtz equations. IEEE J. Lightwave Technol. 14 (1996) 2395-2400
-
(1996)
IEEE J. Lightwave Technol.
, vol.14
, pp. 2395-2400
-
-
Schmidt, F.1
März, R.2
-
53
-
-
0000978807
-
The parabolic approximation method
-
Keller J.B., and Papadakis J.S. (Eds), Springer, New York
-
Tappert F.D. The parabolic approximation method. In: Keller J.B., and Papadakis J.S. (Eds). Wave Propagation and Underwater Acoustics, Lecture Notes in Physics vol. 70 (1977), Springer, New York 224-287
-
(1977)
Wave Propagation and Underwater Acoustics, Lecture Notes in Physics
, vol.70
, pp. 224-287
-
-
Tappert, F.D.1
-
54
-
-
84966217680
-
Well-posedness of one-way wave equations and absorbing boundary conditions
-
Trefethen L.N., and Halpern L. Well-posedness of one-way wave equations and absorbing boundary conditions. J. Acoust. Soc. Amer. 47 (1986) 421-435
-
(1986)
J. Acoust. Soc. Amer.
, vol.47
, pp. 421-435
-
-
Trefethen, L.N.1
Halpern, L.2
-
56
-
-
0033673770
-
Complex Padé approximants for wide-angle acoustic propagators
-
Yevick D., and Thomson D.J. Complex Padé approximants for wide-angle acoustic propagators. J. Acoust. Soc. Amer. 108 (2000) 2784-2790
-
(2000)
J. Acoust. Soc. Amer.
, vol.108
, pp. 2784-2790
-
-
Yevick, D.1
Thomson, D.J.2
-
57
-
-
7444267889
-
Validity of one-way models in the weak range dependence limit
-
Zhu J., and Lu Y.Y. Validity of one-way models in the weak range dependence limit. J. Comput. Acoust. 12 (2004) 55-66
-
(2004)
J. Comput. Acoust.
, vol.12
, pp. 55-66
-
-
Zhu, J.1
Lu, Y.Y.2
-
58
-
-
33846091595
-
-
A. Zisowsky, Discrete transparent boundary conditions for systems of evolution equations, Ph.D. Thesis, Technische Universität Berlin, 2003.
-
-
-
|