-
1
-
-
0000379845
-
-
For reviews see: a, Rappoport, Z, Apeloig, Y, Eds, John Wiley & Sons: Chichester, Chapter 16, pp
-
For reviews see: (a) Müller, T.; Ziehe, W.; Auner, N. In The Chemistry of Organosilicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: Chichester, 1998; Vol. 2, Chapter 16, pp 857-1062.
-
(1998)
The Chemistry of Organosilicon Compounds
, vol.2
, pp. 857-1062
-
-
Müller, T.1
Ziehe, W.2
Auner, N.3
-
2
-
-
0000082255
-
-
Patai, S, Rappoport, Z, Eds, John Wiley & Sons: Chichester, Chapter 17, pp
-
(b) Raabe, G.; Michl, J. In The Chemistry of Organosilicon Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, 1989; Chapter 17, pp 1015-1142.
-
(1989)
The Chemistry of Organosilicon Compounds
, pp. 1015-1142
-
-
Raabe, G.1
Michl, J.2
-
4
-
-
33846237914
-
-
John Wiley & Sons: New York, Chapter 3, pp
-
Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons: New York, 2000; Chapter 3, pp 39-96.
-
(2000)
Silicon in Organic, Organometallic, and Polymer Chemistry
, pp. 39-96
-
-
Brook, M.A.1
-
6
-
-
0001917369
-
-
Rappoport, Z, Apeloig, Y, Eds, John Wiley & Sons: Chichester, Chapter 1. pp
-
(f) Karni, M.; Apeloig, Y.; Kapp, J.; Schleyer, P. von R. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: Chichester, 2001; Vol. 3, Chapter 1. pp 1-163.
-
(2001)
The Chemistry of Organic Silicon Compounds
, vol.3
, pp. 1-163
-
-
Karni, M.1
Apeloig, Y.2
Kapp, J.3
Schleyer, P.V.R.4
-
7
-
-
0037616280
-
-
Rappoport, Z, Ed, John Wiley & Sons: Chichester, Chapter 13, pp
-
(g) Tokitoh, N.; Okazaki, R. In The Chemistry of Organic Germanium, Tin and Lead Compounds; Rappoport, Z., Ed.; John Wiley & Sons: Chichester, 2002; Vol. 2. Chapter 13, pp 843-901.
-
(2002)
The Chemistry of Organic Germanium, Tin and Lead Compounds
, vol.2
, pp. 843-901
-
-
Tokitoh, N.1
Okazaki, R.2
-
9
-
-
0035541142
-
-
(b) Ichinohe, M.; Tanaka, T.; Sekiguchi, A. Chem. Lett. 2001, 11, 1074.
-
(2001)
Chem. Lett
, vol.11
, pp. 1074
-
-
Ichinohe, M.1
Tanaka, T.2
Sekiguchi, A.3
-
14
-
-
51149215937
-
-
(b) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. M.; Thorne, A. J.; Fjeldberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. Soc., Dalton Trans. 1986, 2387.
-
(1986)
J. Chem. Soc., Dalton Trans
, pp. 2387
-
-
Goldberg, D.E.1
Hitchcock, P.B.2
Lappert, M.F.3
Thomas, K.M.4
Thorne, A.J.5
Fjeldberg, T.6
Haaland, A.7
Schilling, B.E.R.8
-
18
-
-
0034299468
-
-
Escudie, J.; Ranaivonjatovo, H.; Rigon, L. Chem. Rev. 2000, 100, 3639-3696.
-
(2000)
Chem. Rev
, vol.100
, pp. 3639-3696
-
-
Escudie, J.1
Ranaivonjatovo, H.2
Rigon, L.3
-
19
-
-
0000289456
-
-
(a) Miracle, G. E.; Ball, J. L.; Powell, D. R.; West, R. J. Am. Chem. Soc. 1993, 115, 11598.
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 11598
-
-
Miracle, G.E.1
Ball, J.L.2
Powell, D.R.3
West, R.4
-
20
-
-
0000426033
-
-
(b) Trommer, M.; Miracle, G. E.; Eichler, B. E.; Powell, D. R.; West, R. Organometallics 1997, 16, 5737.
-
(1997)
Organometallics
, vol.16
, pp. 5737
-
-
Trommer, M.1
Miracle, G.E.2
Eichler, B.E.3
Powell, D.R.4
West, R.5
-
21
-
-
0001431403
-
-
Eichler, B. E.; Powell, D. R.; West, R. Organometallics 1998, 17, 2147.
-
(1998)
Organometallics
, vol.17
, pp. 2147
-
-
Eichler, B.E.1
Powell, D.R.2
West, R.3
-
22
-
-
0001444791
-
-
Eichler, B. E.; Powell, D. R.; West, R. Organometallics 1999, 18, 540.
-
(1999)
Organometallics
, vol.18
, pp. 540
-
-
Eichler, B.E.1
Powell, D.R.2
West, R.3
-
25
-
-
0032837811
-
-
(a) Wiberg, N.; Lerner, H. W.; Vasisht, S. K.; Wagner, S.; Karaghiosoff, K.; Noth, H.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1211.
-
(1999)
Eur. J. Inorg. Chem
, pp. 1211
-
-
Wiberg, N.1
Lerner, H.W.2
Vasisht, S.K.3
Wagner, S.4
Karaghiosoff, K.5
Noth, H.6
Ponikwar, W.7
-
26
-
-
33846263226
-
-
9a
-
9a
-
-
-
-
27
-
-
0037434767
-
-
(a) Ishida, S.; Iwamoto, T.; Kabuto, C.; Kira, M. Nature 2003, 421, 725-727.
-
(2003)
Nature
, vol.421
, pp. 725-727
-
-
Ishida, S.1
Iwamoto, T.2
Kabuto, C.3
Kira, M.4
-
28
-
-
12844275931
-
-
(b) Iwamoto, T.; Masuda, H.; Kabuto, C.; Kira, M. Organometallics 2005, 24, 197.
-
(2005)
Organometallics
, vol.24
, pp. 197
-
-
Iwamoto, T.1
Masuda, H.2
Kabuto, C.3
Kira, M.4
-
29
-
-
27744586712
-
-
Iwamoto, T.; Abe, T.; Kabutu, C.; Kira, M. Chem. Commun. 2005, 41, 5190.
-
(2005)
Chem. Commun
, vol.41
, pp. 5190
-
-
Iwamoto, T.1
Abe, T.2
Kabutu, C.3
Kira, M.4
-
35
-
-
0000308917
-
-
For a definition of bond-strech isomerism, see: a
-
For a definition of bond-strech isomerism, see: (a) Stohrer, W. D.; Hoffmann, R. J. Am. Chem. Soc. 1972, 94, 1661.
-
(1972)
J. Am. Chem. Soc
, vol.94
, pp. 1661
-
-
Stohrer, W.D.1
Hoffmann, R.2
-
37
-
-
37049084284
-
-
For examples of bond-stretch isomers in heavier group 14 systems, see: (c) Nagase, S, Nakano, M. J. Chem. Soc, Chem. Commun. 1988, 1077
-
For examples of bond-stretch isomers in heavier group 14 systems, see: (c) Nagase, S.; Nakano, M. J. Chem. Soc., Chem. Commun. 1988, 1077.
-
-
-
-
38
-
-
84985527640
-
-
Schleyer, P. v. R.; Sax, A. F.; Kalcher, J.; Janoschek, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 364.
-
(1987)
Angew. Chem., Int. Ed. Engl
, vol.26
, pp. 364
-
-
Schleyer, P.V.R.1
Sax, A.F.2
Kalcher, J.3
Janoschek, R.4
-
39
-
-
37049075201
-
-
(e) Nagase, S.; Kudo, T. J. Chem. Soc., Chem. Commun. 1988, 1, 54.
-
(1988)
J. Chem. Soc., Chem. Commun
, vol.1
, pp. 54
-
-
Nagase, S.1
Kudo, T.2
-
41
-
-
33846241492
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johnson, B. G, Chen, W, Wong, M. W, Andres, J. L, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc, Pittsburgh, PA, 1998
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
-
-
-
-
42
-
-
11444250000
-
-
A similar structure for trisilaallene was reported also by
-
A similar structure for trisilaallene was reported also by: Xu, W.; Yang, J.; Xiao, W. J. Phys. Chem. A 2004, 108, 11345-11353.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 11345-11353
-
-
Xu, W.1
Yang, J.2
Xiao, W.3
-
43
-
-
4344685463
-
-
10544. A very similar geometry was reported also in
-
Kosa, M.; Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 2004, 126, 10544. A very similar geometry was reported also in ref 10a.
-
(2004)
J. Am. Chem. Soc
, vol.126
-
-
Kosa, M.1
Karni, M.2
Apeloig, Y.3
-
44
-
-
0002390755
-
-
Wiberg, N.; Schuster, H.; Simon, A.; Peters, K. Angew. Chem. 1986, 98, 100.
-
(1986)
Angew. Chem
, vol.98
, pp. 100
-
-
Wiberg, N.1
Schuster, H.2
Simon, A.3
Peters, K.4
-
45
-
-
0345447038
-
-
Kudo, T.; Akiba, S.; Kondo, Y.; Watanabe, H.; Morokuma, K.; Vreven, T. Organometallics 2003, 22, 4721.
-
(2003)
Organometallics
, vol.22
, pp. 4721
-
-
Kudo, T.1
Akiba, S.2
Kondo, Y.3
Watanabe, H.4
Morokuma, K.5
Vreven, T.6
-
46
-
-
33846190829
-
-
At CCSD/6-311+G2df,p, TS6-7 is not a real transition state but a third-order saddle point with the largest negative eigenvalue corresponding to a disrotatory motion of the SiH2 fragments
-
2 fragments.
-
-
-
-
47
-
-
0030567908
-
-
Bettinger, H. B.; Schreiner, P. R.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Phys. Chem. 1996, 100, 16147.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 16147
-
-
Bettinger, H.B.1
Schreiner, P.R.2
Schleyer, P.V.R.3
Schaefer III, H.F.4
-
48
-
-
33846221271
-
-
The CAS(6,6)/6-31G(d,p) natural Orbitals are almost identical to the HF molecular orbitals.
-
The CAS(6,6)/6-31G(d,p) natural Orbitals are almost identical to the HF molecular orbitals.
-
-
-
-
50
-
-
33846263862
-
-
As implemented in the NBO 5.0 version. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001; http://www.chem.wisc.edu/~nbo5.
-
(a) As implemented in the NBO 5.0 version. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001; http://www.chem.wisc.edu/~nbo5.
-
-
-
-
52
-
-
33846218896
-
-
24b theory. No bond critical point was found between the terminal silicons in 6.
-
24b theory. No bond critical point was found between the terminal silicons in 6.
-
-
-
-
54
-
-
33846256859
-
-
The strong interaction between the Si1-Si3 bond orbital and the empty Si2(3p) orbital in 6 is evident in the magnitude of the second-order perturbation stabilization energy (ΔE) resulting from this interaction. Thus, while ΔE is zero in 7 it increases to 177 kcal/mol in 6 calculated using NBO 5.0, These interaction energies change significantly with the method of calculation and basis set used, but the same qualitative picture emerges with several used methods
-
2(3p) orbital in 6 is evident in the magnitude of the second-order perturbation stabilization energy (ΔE) resulting from this interaction. Thus, while ΔE is zero in 7 it increases to 177 kcal/mol in 6 (calculated using NBO 5.0). These interaction energies change significantly with the method of calculation and basis set used, but the same qualitative picture emerges with several used methods.
-
-
-
-
55
-
-
33846210400
-
-
2)) = 1.99 el., Table 2).
-
2)) = 1.99 el., Table 2).
-
-
-
-
56
-
-
33846217591
-
-
Fully optimized at UB3LYP/6-31G(d,p). The geometries are given in the Supporting Information.
-
Fully optimized at UB3LYP/6-31G(d,p). The geometries are given in the Supporting Information.
-
-
-
-
57
-
-
33846237913
-
-
2-(3p) orbital. The different electronic structures of the triplet states of 6 and 7 point to the different electronic structures of the singlet ground states of 6 and 7.
-
2-(3p) orbital. The different electronic structures of the triplet states of 6 and 7 point to the different electronic structures of the singlet ground states of 6 and 7.
-
-
-
-
58
-
-
33846202724
-
-
4 isomers were optimized also using the larger B3LYP/6-311G(2d,p) basis set. It was found that this does not change significantly their relative energies. There is a relatively good agreement between the relative energy of 12 with respect to 6, calculated at B3LYP/6-31G(d,p) (11.0 kcal/mol), MP2/6-31G(d,p) (8.5 kcal/mol), and CCSD/6-311+G(2df,p) (12.8 kcal/mol).
-
4 isomers were optimized also using the larger B3LYP/6-311G(2d,p) basis set. It was found that this does not change significantly their relative energies. There is a relatively good agreement between the relative energy of 12 with respect to 6, calculated at B3LYP/6-31G(d,p) (11.0 kcal/mol), MP2/6-31G(d,p) (8.5 kcal/mol), and CCSD/6-311+G(2df,p) (12.8 kcal/mol).
-
-
-
-
59
-
-
0037828466
-
-
and references therein
-
(a) Kakkar, R. Int. J. Quantum Chem. 2003, 94, 93-104, and references therein.
-
(2003)
Int. J. Quantum Chem
, vol.94
, pp. 93-104
-
-
Kakkar, R.1
-
60
-
-
0000612073
-
-
i
-
(b) (i) Barthelat, J. C.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc. 1979, 103, 3785.
-
(1979)
J. Am. Chem. Soc
, vol.103
, pp. 3785
-
-
Barthelat, J.C.1
Trinquier, G.2
Bertrand, G.3
-
63
-
-
33846198561
-
-
Most Si3H4 isomers lie in a relatively narrow energy range of ca. 10 kcal/mol, while the Si4H6 31b isomers lie in an energy range of ca. 35 kcal/mol. The Si 4Me6 isomers (example of Si4R6 31c) lie in an energy range of ca. 145 kcal/mol. No hydrogen bridged structures were located on the Si4H6 PES
-
6 PES.
-
-
-
-
65
-
-
4143052378
-
-
Koch, R.; Bruhn, T.; Weidenbruch, M. Theochem. 2004, 680, 91.
-
(2004)
Theochem
, vol.680
, pp. 91
-
-
Koch, R.1
Bruhn, T.2
Weidenbruch, M.3
-
66
-
-
4544372069
-
-
Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755.
-
(2004)
Science
, vol.305
, pp. 1755
-
-
Sekiguchi, A.1
Kinjo, R.2
Ichinohe, M.3
-
67
-
-
33846235701
-
-
We suspect that additional stable structures may exist on the Si 3H4 singlet surface
-
4 singlet surface.
-
-
-
-
68
-
-
33645396705
-
-
While our paper was in press another paper that discusses the bonding in trisilaallene was published: Veszprémi, T, Petrov, K, Nguyen, C. T. Organometallics 2006, 25, 1480
-
While our paper was in press another paper that discusses the bonding in trisilaallene was published: Veszprémi, T.; Petrov, K.; Nguyen, C. T. Organometallics 2006, 25, 1480.
-
-
-
|