메뉴 건너뛰기




Volumn 4293 LNAI, Issue , 2006, Pages 494-504

How good are the Bayesian information criterion and the minimum description length principle for model selection? A Bayesian network analysis

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; MATHEMATICAL MODELS;

EID: 33845914962     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11925231_46     Document Type: Conference Paper
Times cited : (16)

References (28)
  • 1
    • 0002370418 scopus 로고    scopus 로고
    • A Tutorial on Learning with Bayexian Networks
    • M.I. Jordan, Editor, MIT Press. p
    • Heckerman, D., A Tutorial on Learning with Bayexian Networks, in Learning in Graphical Models, M.I. Jordan, Editor. 1998, MIT Press. p. 301-354.
    • (1998) Learning in Graphical Models , pp. 301-354
    • Heckerman, D.1
  • 4
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam, W. and Bacchus, Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 1994. 10(4).
    • (1994) Computational Intelligence , vol.10 , Issue.4
    • Lam, W.1    Bacchus2
  • 5
    • 0345792473 scopus 로고    scopus 로고
    • Model Selection Based on Minimum Description Length
    • Grunwald, P., Model Selection Based on Minimum Description Length. Journal of Mathematical Psychology, 2000. 44: p. 133-152.
    • (2000) Journal of Mathematical Psychology , vol.44 , pp. 133-152
    • Grunwald, P.1
  • 6
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian Belief Networks based on the MDL principle: An efficient algorithm using the branch and bound technique
    • Bary, Italy
    • Suzuki, J. Learning Bayesian Belief Networks based on the MDL principle: An efficient algorithm using the branch and bound technique, in International Conference on Machine Learning. 1996. Bary, Italy.
    • (1996) International Conference on Machine Learning
    • Suzuki, J.1
  • 7
    • 0008580731 scopus 로고    scopus 로고
    • Learning Bayesian Belief Networks based on the Minimum Description Length Principle: Basic Properties
    • Suzuki, J., Learning Bayesian Belief Networks based on the Minimum Description Length Principle: Basic Properties. IEICE Transactions on Fundamentals, 1999. E82-A(10): p. 2237-2245.
    • (1999) IEICE Transactions on Fundamentals , vol.E82-A , Issue.10 , pp. 2237-2245
    • Suzuki, J.1
  • 8
    • 0011725472 scopus 로고    scopus 로고
    • An Overview of the Representation and Discovery of Causal Relationships using Bayesian Networks
    • C. Glymour and G.F. Cooper, Editors, AAAI Press, MIT Press, p
    • Cooper, G.F., An Overview of the Representation and Discovery of Causal Relationships using Bayesian Networks, in Computation, Causation & Discovery, C. Glymour and G.F. Cooper, Editors. 1999, AAAI Press / MIT Press, p. 3-62.
    • (1999) Computation, Causation & Discovery , pp. 3-62
    • Cooper, G.F.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistic Networks from Data
    • Cooper, G.F. and E. Herskovits, A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 1992. 9: p. 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 10
    • 0006178650 scopus 로고    scopus 로고
    • Learning Bayesian Networks from data: An information theory based approach
    • University of Ulster: Jordanstown, United Kingdom
    • Cheng, J., Learning Bayesian Networks from data: An information theory based approach, in Faculty of Informatics, University of Ulster, United Kingdom. 1998, University of Ulster: Jordanstown, United Kingdom.
    • (1998) Faculty of Informatics, University of Ulster, United Kingdom
    • Cheng, J.1
  • 11
  • 13
    • 0003338515 scopus 로고
    • Causation, Prediction and Search
    • First ed, ed. J. Berger, et al. Springer-Verlag
    • Spirtes, P., C. Glymour, and R. Scheines, Causation, Prediction and Search. First ed. Lecture Notes in Statistics, ed. J. Berger, et al. Vol. 81. 1993: Springer-Verlag. 526.
    • (1993) Lecture Notes in Statistics , vol.81 , pp. 526
    • Spirtes, P.1    Glymour, C.2    Scheines, R.3
  • 14
    • 0002996131 scopus 로고    scopus 로고
    • Akaike's Information Criterion and Recent Developments in Information Complexity
    • Bozdogan, H., Akaike's Information Criterion and Recent Developments in Information Complexity. Journal of Mathematical Psychology, 2000. 44: p. 62-91.
    • (2000) Journal of Mathematical Psychology , vol.44 , pp. 62-91
    • Bozdogan, H.1
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian Networks: The combination of knowledge and statistical data
    • Heckerman, D., D. Geiger, and D.M. Chickering, Learning Bayesian Networks: The combination of knowledge and statistical data. Machine Learning, 1995.20: p. 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 16
    • 33845188435 scopus 로고    scopus 로고
    • Cruz-Ramirez Nicandro, N.-F.L., Acosta-Mesa Hector Gabriel, Barrientos-Martinez Erandi, Rojas-Marcial Juan Efrain, A Parsimonious Constraint-based Algorithm to Induce Bayesian Network Structures from Data, in IEEE Proceedings of the Mexican International Conference on Computer Science ENC 2005, IEEE, Editor. 2005, IEEE: Puebla. p. 306-313.
    • Cruz-Ramirez Nicandro, N.-F.L., Acosta-Mesa Hector Gabriel, Barrientos-Martinez Erandi, Rojas-Marcial Juan Efrain, A Parsimonious Constraint-based Algorithm to Induce Bayesian Network Structures from Data, in IEEE Proceedings of the Mexican International Conference on Computer Science ENC 2005, IEEE, Editor. 2005, IEEE: Puebla. p. 306-313.
  • 18
    • 33845929195 scopus 로고    scopus 로고
    • Duda, R.O., Hart, Peter E., Stork, David G., Pattern Classification. 2001: John Wiley & Sons, INC.
    • Duda, R.O., Hart, Peter E., Stork, David G., Pattern Classification. 2001: John Wiley & Sons, INC.
  • 19
    • 0006999775 scopus 로고    scopus 로고
    • Learning Bayesian Networks from Data
    • University of California, Los Angeles: Los Angeles, California, p
    • Chickering, D.M., Learning Bayesian Networks from Data, in Computer Science, Cognitive Systems Laboratory. 1996, University of California, Los Angeles: Los Angeles, California, p. 172.
    • (1996) Computer Science, Cognitive Systems Laboratory , pp. 172
    • Chickering, D.M.1
  • 20
    • 84972488038 scopus 로고
    • Bayesian Analysis in Expert Systems
    • Spiegelhalter, D.J., et al., Bayesian Analysis in Expert Systems. Statistical Science, 1993. 8(3): p. 219-247.
    • (1993) Statistical Science , vol.8 , Issue.3 , pp. 219-247
    • Spiegelhalter, D.J.1
  • 21
    • 33845945107 scopus 로고    scopus 로고
    • Norsys, www.norsys.com.
    • Norsys1
  • 24
    • 85164392958 scopus 로고
    • A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • Montreal, Canada: Morgan Kaufmann
    • Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. in 14th International Joint Conference on Artificial Intelligence IJCAI'95. 1995a. Montreal, Canada: Morgan Kaufmann.
    • (1995) 14th International Joint Conference on Artificial Intelligence IJCAI'95
    • Kohavi, R.1
  • 27
    • 0042456371 scopus 로고
    • An Algorithm for the Construction of Bayesian Network Structures from Data
    • Morgan Kaufmann
    • Singh, M., Valtorta, Marco. An Algorithm for the Construction of Bayesian Network Structures from Data, in 9th Conference on Uncertainty in Artificial Intelligence. 1993: Morgan Kaufmann.
    • (1993) 9th Conference on Uncertainty in Artificial Intelligence
    • Singh, M.1
  • 28
    • 0001173999 scopus 로고
    • Construction of Bayesian Network Structures from Data: A Brief Survey and an Efficient Algorithm
    • Singh, M., Valtorta, Marco, Construction of Bayesian Network Structures from Data: a Brief Survey and an Efficient Algorithm. International Journal of Approximate Reasoning, 1995. 12: p. 111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.