-
1
-
-
0000832248
-
Mathematical problems
-
(M. Newton, Transl.)
-
Hilbert D. Mathematical problems. (M. Newton, Transl.). Bull. Amer. Math. Soc. 8 (1902) 437-479
-
(1902)
Bull. Amer. Math. Soc.
, vol.8
, pp. 437-479
-
-
Hilbert, D.1
-
2
-
-
0002587254
-
Mathematical problems for the next century
-
Smale S. Mathematical problems for the next century. Math. Intelligencer 20 (1998) 7-15
-
(1998)
Math. Intelligencer
, vol.20
, pp. 7-15
-
-
Smale, S.1
-
3
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifurcation Chaos 13 (2003) 47-106
-
(2003)
Internat. J. Bifurcation Chaos
, vol.13
, pp. 47-106
-
-
Li, J.1
-
4
-
-
33845868440
-
Computation of limit cycles - the second part of Hilbert's 16th problem
-
Yu P. Computation of limit cycles - the second part of Hilbert's 16th problem. Fields Inst. Commun. 49 (2006) 151-177
-
(2006)
Fields Inst. Commun.
, vol.49
, pp. 151-177
-
-
Yu, P.1
-
5
-
-
0002945544
-
Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields
-
Arnold V.I. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl. 11 (1977) 85-92
-
(1977)
Funct. Anal. Appl.
, vol.11
, pp. 85-92
-
-
Arnold, V.I.1
-
6
-
-
0001790023
-
Computation of normal forms via a perturbation technique
-
Yu P. Computation of normal forms via a perturbation technique. J. Sound Vibration 211 (1998) 19-38
-
(1998)
J. Sound Vibration
, vol.211
, pp. 19-38
-
-
Yu, P.1
-
7
-
-
0000495631
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
Bautin N.N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sb. 30 72 (1952) 181-196
-
(1952)
Mat. Sb.
, vol.30
, Issue.72
, pp. 181-196
-
-
Bautin, N.N.1
-
8
-
-
33845909222
-
-
P. Yu, Limit cycles in 3rd-order planar system, International Congress of Mathematicians, Beijing, China, August 20-28, 2002
-
-
-
-
9
-
-
24144462859
-
Twelve limit cycles in a cubic case of the 16th Hilbert problem
-
Yu P., and Han M. Twelve limit cycles in a cubic case of the 16th Hilbert problem. Internat. J. Bifurcation Chaos 15 7 (2005) 2191-2205
-
(2005)
Internat. J. Bifurcation Chaos
, vol.15
, Issue.7
, pp. 2191-2205
-
-
Yu, P.1
Han, M.2
-
11
-
-
2942666280
-
Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
-
Zhang T.H., Han M., Zang H., and Meng X.Z. Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations. Chaos Solitons Fractals 22 (2004) 1127-1138
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 1127-1138
-
-
Zhang, T.H.1
Han, M.2
Zang, H.3
Meng, X.Z.4
-
15
-
-
0036686417
-
The number of limit cycles for a class of quintic Hamiltonian systems under quintic perturbations
-
Chen G., Wu Y., and Yang X. The number of limit cycles for a class of quintic Hamiltonian systems under quintic perturbations. J. Austr. Math. Soc. 73 (2002) 37-53
-
(2002)
J. Austr. Math. Soc.
, vol.73
, pp. 37-53
-
-
Chen, G.1
Wu, Y.2
Yang, X.3
-
16
-
-
17044415311
-
2-equivariant perturbed planar Hamiltonian polynomial vector field
-
2-equivariant perturbed planar Hamiltonian polynomial vector field. Internat. J. Bifurcation Chaos 15 (2005) 137-155
-
(2005)
Internat. J. Bifurcation Chaos
, vol.15
, pp. 137-155
-
-
Li, J.1
Zhou, H.2
-
18
-
-
20444455852
-
Bifurcation of limit cycles in a quintic Hamiltonian system under sixth-order perturbation
-
Wang S., and Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under sixth-order perturbation. Chaos Solitons Fractals 26 5 (2005) 1317-1335
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.5
, pp. 1317-1335
-
-
Wang, S.1
Yu, P.2
-
20
-
-
33745297890
-
-
10-equivariant vector fields of degree 9, Internat. J. Bifurcation Chaos 16 (7) (2006), in press
-
-
-
-
21
-
-
85126441224
-
-
S. Wang, P. Yu, Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11, Chaos Solitons Fractals (2006), in press
-
-
-
|