메뉴 건너뛰기




Volumn 220, Issue 4, 2006, Pages 553-564

Three new MDL-based pruning techniques for robust rule induction

Author keywords

Inductive learning; Machine learning; Minimum description length principle; Noise handling; Pruning; Rule induction

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA REDUCTION; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; ROBUSTNESS (CONTROL SYSTEMS); SET THEORY;

EID: 33845688829     PISSN: 09544062     EISSN: None     Source Type: Journal    
DOI: 10.1243/09544062C18404     Document Type: Article
Times cited : (5)

References (35)
  • 2
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • Fürnkranz, J. Pruning algorithms for rule learning. Mach. Learn., 1996, 27, 139-171.
    • (1996) Mach. Learn. , vol.27 , pp. 139-171
    • Fürnkranz, J.1
  • 4
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and Niblett, T. The CN2 induction algorithm. Mach. Learn., 1989, 3(4), 261-284.
    • (1989) Mach. Learn. , vol.3 , Issue.4 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 5
    • 8344278087 scopus 로고
    • PhD Thesis, Technisch-Naturwissens chaftlichen Fakultät, Techniscen Universität Wien
    • Fürnkranz, J. Efficient pruning methods for relational learning. PhD Thesis, Technisch-Naturwissens chaftlichen Fakultät, Techniscen Universität Wien, 1994.
    • (1994) Efficient Pruning Methods for Relational Learning
    • Fürnkranz, J.1
  • 6
    • 4644373132 scopus 로고    scopus 로고
    • PhD Thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand
    • Frank, E. Pruning decision trees and lists. PhD Thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand, 2000.
    • (2000) Pruning Decision Trees and Lists
    • Frank, E.1
  • 7
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers, J. An empirical comparison of pruning methods for decision tree induction. Mach. Learn., 1989, 4, 227-243.
    • (1989) Mach. Learn. , vol.4 , pp. 227-243
    • Mingers, J.1
  • 8
    • 0031101089 scopus 로고    scopus 로고
    • Simplifying decision trees: A survey
    • Breslow, A. and Aha, D. W. Simplifying decision trees: a survey. Knowl. Eng. Rev., 1996, 12, 1-40.
    • (1996) Knowl. Eng. Rev. , vol.12 , pp. 1-40
    • Breslow, A.1    Aha, D.W.2
  • 9
  • 10
    • 0023417432 scopus 로고
    • Simplifying decision trees
    • Quinlan, J. R. Simplifying decision trees. Int. J. Man Mach. Stud., 1987, 27, 221-234.
    • (1987) Int. J. Man Mach. Stud. , vol.27 , pp. 221-234
    • Quinlan, J.R.1
  • 11
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. and Haussler, D. Boolean feature discovery in empirical learning. Mach. Learn., 1990, 3, 71-99.
    • (1990) Mach. Learn. , vol.3 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 13
    • 0038710451 scopus 로고
    • Efficient pruning methods for separate-and-conquer rule learning systems
    • Chambery, France, (Morgan Kaufmann, San Fransisco, CA)
    • Cohen, W. W. Efficient pruning methods for separate-and-conquer rule learning systems. In Proceedings of the 13th International Conference on Artificial intelligence, Chambery, France, 1993, 988-994 (Morgan Kaufmann, San Fransisco, CA).
    • (1993) Proceedings of the 13th International Conference on Artificial Intelligence , pp. 988-994
    • Cohen, W.W.1
  • 14
    • 33745220439 scopus 로고    scopus 로고
    • Working paper, Department of Computer Science, University of Waikato, Hamilton, New Zealand
    • Frank, E. and Witten, I. H. Reduced-error prunning with significant tests. Working paper, Department of Computer Science, University of Waikato, Hamilton, New Zealand, 1999.
    • (1999) Reduced-error Prunning with Significant Tests
    • Frank, E.1    Witten, I.H.2
  • 15
    • 0012325256 scopus 로고    scopus 로고
    • An analysis of reduced error pruning
    • Elomaa, T. and Kääriäinen, M. An analysis of reduced error pruning. J. Artif. Int. Res., 2001, 15, 163-187.
    • (2001) J. Artif. Int. Res. , vol.15 , pp. 163-187
    • Elomaa, T.1    Kääriäinen, M.2
  • 18
    • 0000318553 scopus 로고
    • Stochastic complexity and modelling
    • Rissanen, J. Stochastic complexity and modelling. Ann. Stat., 1986, 14(3), 1080-1100.
    • (1986) Ann. Stat. , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 19
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modelling
    • Barron, A., Rissanen, J., and Yu, B. The minimum description length principle in coding and modelling. IEEE Trans. Inform. Theory, 1998, 44(6), 2743-2760.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 20
    • 0345792473 scopus 로고    scopus 로고
    • Model selection based on minimum description length
    • Grunwald, P. Model selection based on minimum description length. J. Math. Psychol, 2000, 44, 133-170.
    • (2000) J. Math. Psychol , vol.44 , pp. 133-170
    • Grunwald, P.1
  • 23
    • 0024627518 scopus 로고
    • Inferring decision trees using minimum description length principle
    • Quinlan, J. R. and Rivest, R. L. Inferring decision trees using minimum description length principle. Inform. Comp., 1989, 80, 227-248.
    • (1989) Inform. Comp. , vol.80 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.L.2
  • 25
    • 85152578270 scopus 로고
    • The minimum description length principle and categorical theories
    • New Brunswick, NJ, (Morgan Kaufmann, San Fransisco, CA)
    • Quinlan, J. R. The minimum description length principle and categorical theories. In Proceedings of the 11th International Conference on Machine learning, New Brunswick, NJ, 1994,233-241 (Morgan Kaufmann, San Fransisco, CA).
    • (1994) Proceedings of the 11th International Conference on Machine Learning , pp. 233-241
    • Quinlan, J.R.1
  • 26
    • 85152634307 scopus 로고
    • MDL and categorical theories (continued)
    • Lake Tahoe City, CA, (Morgan Kaufmann, San Fransisco, CA)
    • Quinlan, J. R. MDL and categorical theories (continued). In Proceedings of the 12th International Conference on Machine learning, Lake Tahoe City, CA, 1995, 464-470 (Morgan Kaufmann, San Fransisco, CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 464-470
    • Quinlan, J.R.1
  • 29
    • 84947922557 scopus 로고    scopus 로고
    • Compression-based pruning of decision lists
    • Prague, Czech Republic, (Springer-Verlag, Berlin)
    • Pfahringer, B. Compression-based pruning of decision lists. In Proceedings of the 9th European Conference on Machine learning, Prague, Czech Republic, 1997, 199-212 (Springer-Verlag, Berlin).
    • (1997) Proceedings of the 9th European Conference on Machine Learning , pp. 199-212
    • Pfahringer, B.1
  • 32
    • 21644460416 scopus 로고    scopus 로고
    • Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, Australia accessed 1 February 2003
    • RuleQuest. Data Mining Tools C5.0. Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, Australia, available from http://www.rulequest.com/see5-info.html, accessed 1 February 2003.
    • Data Mining Tools C5.0
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science, Irvine, CA, accessed 1 February 2003
    • Blake, C. L. and Merz, C. J. UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine, CA, 1998, available from http://www.ics.uci.edu/~mlearn/ MLRepository.html, accessed 1 February 2003.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.