메뉴 건너뛰기




Volumn 92, Issue 4, 2007, Pages 479-489

Node-pair reliability of network systems with small distances between adjacent nodes

Author keywords

Directed undirected graph; K terminal reliability; Network reliability; Random graph; Sequence ordering; Sliding window technique; Two terminal reliability

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; GRAPH THEORY; PROBABILITY; RANDOM PROCESSES; RELIABILITY THEORY;

EID: 33845625119     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2005.12.012     Document Type: Article
Times cited : (3)

References (6)
  • 2
    • 84941446735 scopus 로고
    • Computational complexity of network reliability analysis
    • Ball M.O. Computational complexity of network reliability analysis. IEEE Trans Reliab R-35 (1986) 230
    • (1986) IEEE Trans Reliab , vol.R-35 , pp. 230
    • Ball, M.O.1
  • 3
    • 0000483766 scopus 로고    scopus 로고
    • Determining terminal-pair reliability based on Edge Expansion Diagrams using OBDD
    • Kuo S.Y. Determining terminal-pair reliability based on Edge Expansion Diagrams using OBDD. IEEE Trans Reliab 48 3 (1999) 234
    • (1999) IEEE Trans Reliab , vol.48 , Issue.3 , pp. 234
    • Kuo, S.Y.1
  • 4
    • 5444261296 scopus 로고    scopus 로고
    • A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability
    • Ramirez-Marquez J.E., and Coit D.W. A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability. Reliab Eng Syst Saf 87 2 (2005) 141
    • (2005) Reliab Eng Syst Saf , vol.87 , Issue.2 , pp. 141
    • Ramirez-Marquez, J.E.1    Coit, D.W.2
  • 5
    • 0036507951 scopus 로고    scopus 로고
    • A linear-time algorithm for computing K-terminal reliability on Proper Interval Graphs
    • Lin M.S. A linear-time algorithm for computing K-terminal reliability on Proper Interval Graphs. IEEE Trans Reliab 51 1 (2002) 58
    • (2002) IEEE Trans Reliab , vol.51 , Issue.1 , pp. 58
    • Lin, M.S.1
  • 6
    • 33845649936 scopus 로고    scopus 로고
    • Barlow RE, Proschan F. Mathematical theory of reliability. Philadelphia, PA: SIAM; 1996.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.