-
2
-
-
84968497559
-
Boundness of solutions to functional integro-differential equations
-
Hu Z. Boundness of solutions to functional integro-differential equations. Proc. Am. Math. Soc. 114 2 (1992)
-
(1992)
Proc. Am. Math. Soc.
, vol.114
, Issue.2
-
-
Hu, Z.1
-
3
-
-
0040183963
-
Oscillation of the bounded solutions of impulsive differential-difference equations of second order
-
Bainov D.D., Dimitrova M.B., and Dishliev A.B. Oscillation of the bounded solutions of impulsive differential-difference equations of second order. Appl. Math. Comput. 114 (2000) 61-68
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 61-68
-
-
Bainov, D.D.1
Dimitrova, M.B.2
Dishliev, A.B.3
-
4
-
-
2942527305
-
Delay-dependent robust stability of uncertain nonlinear systems with time delay
-
Cao J., and Wang J. Delay-dependent robust stability of uncertain nonlinear systems with time delay. Appl. Math. Comput. 154 (2004) 289-297
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 289-297
-
-
Cao, J.1
Wang, J.2
-
5
-
-
4344612270
-
Numerical analysis of singularly perturbed delay differential equations with layer behavior
-
Kadalbajoo M.K., and Sharma K.K. Numerical analysis of singularly perturbed delay differential equations with layer behavior. Appl. Math. Comput. 157 (2004) 11-28
-
(2004)
Appl. Math. Comput.
, vol.157
, pp. 11-28
-
-
Kadalbajoo, M.K.1
Sharma, K.K.2
-
6
-
-
0036341039
-
Numerical analysis of Boundary-Value Problems for singularly-perturbed differential-difference equations with small shifts of mixed type
-
Kadalbajoo M.K., and Sharma K.K. Numerical analysis of Boundary-Value Problems for singularly-perturbed differential-difference equations with small shifts of mixed type. J. Optim. Theory Appl. 115 (2002) 145-163
-
(2002)
J. Optim. Theory Appl.
, vol.115
, pp. 145-163
-
-
Kadalbajoo, M.K.1
Sharma, K.K.2
-
7
-
-
26444543234
-
A Taylor polynomial approach for solving differential-difference equations
-
Gulsu M., and Sezer M. A Taylor polynomial approach for solving differential-difference equations. J. Comput. Appl. Math. 186 (2006) 349-364
-
(2006)
J. Comput. Appl. Math.
, vol.186
, pp. 349-364
-
-
Gulsu, M.1
Sezer, M.2
-
8
-
-
0008254857
-
A Taylor expansion approach for solving integral equation
-
Kanwal R.P., and Liu K.C. A Taylor expansion approach for solving integral equation. Int. J. Math. Educ. Sci. Technol. 20 3 (1989) 411-414
-
(1989)
Int. J. Math. Educ. Sci. Technol.
, vol.20
, Issue.3
, pp. 411-414
-
-
Kanwal, R.P.1
Liu, K.C.2
-
9
-
-
25644449925
-
A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations
-
Nas S., Yalçi{dotless}nbaş S., and Sezer M. A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations. Int. J. Math. Educ. Sci. Technol. 31 2 (2000) 213-225
-
(2000)
Int. J. Math. Educ. Sci. Technol.
, vol.31
, Issue.2
, pp. 213-225
-
-
Nas, S.1
Yalçinbaş, S.2
Sezer, M.3
-
10
-
-
85016783294
-
A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials
-
Sezer M. A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int. J. Math. Educ. Sci. Technol. 27 6 (1996) 821-834
-
(1996)
Int. J. Math. Educ. Sci. Technol.
, vol.27
, Issue.6
, pp. 821-834
-
-
Sezer, M.1
-
11
-
-
0000992795
-
The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials
-
Yalçi{dotless}nbaş S., and Sezer M. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 112 (2002) 291-308
-
(2002)
Appl. Math. Comput.
, vol.112
, pp. 291-308
-
-
Yalçinbaş, S.1
Sezer, M.2
-
12
-
-
27944433953
-
A Taylor collocation method for the solution of linear integro-differential equations
-
Karamete A., and Sezer M. A Taylor collocation method for the solution of linear integro-differential equations. Int. J. Comput. Math. 79 9 (2002) 987-1000
-
(2002)
Int. J. Comput. Math.
, vol.79
, Issue.9
, pp. 987-1000
-
-
Karamete, A.1
Sezer, M.2
|