-
1
-
-
0040183963
-
Oscillation of the bounded solutions of impulsive differential-difference equations of second order
-
D.D. Bainov, M.B. Dimitrova, and A.B. Dishliev Oscillation of the bounded solutions of impulsive differential-difference equations of second order Appl. Math. Comput. 114 2000 61 68
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 61-68
-
-
Bainov, D.D.1
Dimitrova, M.B.2
Dishliev, A.B.3
-
2
-
-
2942527305
-
Delay-dependent robust stability of uncertain nonlinear systems with time delay
-
J. Cao, and J. Wang Delay-dependent robust stability of uncertain nonlinear systems with time delay Appl. Math. Comput. 154 2004 289 297
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 289-297
-
-
Cao, J.1
Wang, J.2
-
3
-
-
0036341039
-
Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type
-
M.K. Kadalbajoo, and K.K. Sharma Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type J. Optim. Theory Appl. 115 2002 145 163
-
(2002)
J. Optim. Theory Appl.
, vol.115
, pp. 145-163
-
-
Kadalbajoo, M.K.1
Sharma, K.K.2
-
4
-
-
4344612270
-
Numerical analysis of singularly perturbed delay differential equations with layer behavior
-
M.K. Kadalbajoo, and K.K. Sharma Numerical analysis of singularly perturbed delay differential equations with layer behavior Appl. Math. Comput. 157 2004 11 28
-
(2004)
Appl. Math. Comput.
, vol.157
, pp. 11-28
-
-
Kadalbajoo, M.K.1
Sharma, K.K.2
-
5
-
-
0008254857
-
A Taylor expansion approach for solving integral equation
-
K.P. Kanwal, and K.C. Liu A Taylor expansion approach for solving integral equation Internat. J. Math. Ed. Sci. Tech. 20 3 1989 411 414
-
(1989)
Internat. J. Math. Ed. Sci. Tech.
, vol.20
, Issue.3
, pp. 411-414
-
-
Kanwal, K.P.1
Liu, K.C.2
-
7
-
-
25644449925
-
A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations
-
S. Nas, S. Yalçinbas, and M. Sezer A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations Internat. J. Math. Ed. Sci. Technol. 31 2 2000 213 225
-
(2000)
Internat. J. Math. Ed. Sci. Technol.
, vol.31
, Issue.2
, pp. 213-225
-
-
Nas, S.1
Yalçinbas, S.2
Sezer, M.3
-
9
-
-
0008173703
-
Taylor polynomial solution of Volterra Integral equations
-
M. Sezer Taylor polynomial solution of Volterra Integral equations Internat. J. Math. Ed. Sci. Technol. 25 5 1994 625 633
-
(1994)
Internat. J. Math. Ed. Sci. Technol.
, vol.25
, Issue.5
, pp. 625-633
-
-
Sezer, M.1
-
10
-
-
85016783294
-
A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials
-
M. Sezer A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials Internat. J. Math. Ed. Sci. Technol. 27 6 1996 821 834
-
(1996)
Internat. J. Math. Ed. Sci. Technol.
, vol.27
, Issue.6
, pp. 821-834
-
-
Sezer, M.1
-
11
-
-
84968497559
-
Boundness of solutions to functional integro-differential equations
-
H. Zuoshang Boundness of solutions to functional integro-differential equations Proc. Amer. Math. Soc. 114 2 1992
-
(1992)
Proc. Amer. Math. Soc.
, vol.114
, Issue.2
-
-
Zuoshang, H.1
|