-
1
-
-
0003713964
-
-
Athena Scientific, Belmont, Massachussets, 2 edition
-
D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachussets, 2 edition, 1999.
-
(1999)
Nonlinear Programming
-
-
Bertsekas, D.1
-
2
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
with discussions
-
J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussions). Journal, of the Royal Statistical Society Series B, 36:192-236, 1974.
-
(1974)
Journal, of the Royal Statistical Society Series B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
4
-
-
14344252373
-
Training conditional random fields via gradient tree boosting
-
Banff, Canada
-
T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boosting. In ICML, Banff, Canada, 2004.
-
(2004)
ICML
-
-
Dietterich, T.G.1
Ashenfelter, A.2
Bulatov, Y.3
-
5
-
-
0003543733
-
-
Cambridge University Press, Cambridge, 2nd edition
-
G. Hardy, J. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, Cambridge, 2nd edition, 1952.
-
(1952)
Inequalities
-
-
Hardy, G.1
Littlewood, J.2
Pólya, G.3
-
6
-
-
0242480914
-
Selecting weighting factors in logarithmic opinion pools
-
T. Heskes. Selecting weighting factors in logarithmic opinion pools. In Advances in NIPS, volume 10, 1998.
-
(1998)
Advances in NIPS
, vol.10
-
-
Heskes, T.1
-
7
-
-
0344120654
-
Discriminative Random Fields: A discriminative framework for contextual interaction in classification
-
S. Kumar and M. Hebert. Discriminative Random Fields: A discriminative framework for contextual interaction in classification. In ICCV, 2003.
-
(2003)
ICCV
-
-
Kumar, S.1
Hebert, M.2
-
8
-
-
0142192295
-
Conditional Random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional Random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
-
(2001)
ICML
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
10
-
-
24644492941
-
Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models
-
San Diego, CA, Jun
-
N. Nguyen, D. Phung, S. Venkatesh, and H. H. Bui. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In Proc. CVPR, San Diego, CA, Jun 2005.
-
(2005)
Proc. CVPR
-
-
Nguyen, N.1
Phung, D.2
Venkatesh, S.3
Bui, H.H.4
-
12
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
14
-
-
14344253846
-
Dynamic Conditional Random Fields: Factorized probabilistic models for labeling and segmenting sequence data
-
C. A. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic Conditional Random Fields: factorized probabilistic models for labeling and segmenting sequence data. In ICML, 2004.
-
(2004)
ICML
-
-
Sutton, C.A.1
Rohanimanesh, K.2
McCallum, A.3
-
15
-
-
84899024607
-
Contextual models for object detection using boosted random fields
-
A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17, pages 1401-1408. 2005.
-
(2005)
NIPS
, vol.17
, pp. 1401-1408
-
-
Torralba, A.1
Murphy, K.P.2
Freeman, W.T.3
|