메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 1686-1693

AdaBoost.MRF: Boosted Markov random forests and application to multilevel activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVITY RECOGNITION; DYNAMIC CONDITIONAL RANDOM FIELD (DCRF); INTELLIGENT MONITORING SYSTEMS; MARKOV RANDOM FIELD (MRF);

EID: 33845575878     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2006.49     Document Type: Conference Paper
Times cited : (17)

References (16)
  • 1
    • 0003713964 scopus 로고    scopus 로고
    • Athena Scientific, Belmont, Massachussets, 2 edition
    • D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachussets, 2 edition, 1999.
    • (1999) Nonlinear Programming
    • Bertsekas, D.1
  • 2
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • with discussions
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussions). Journal, of the Royal Statistical Society Series B, 36:192-236, 1974.
    • (1974) Journal, of the Royal Statistical Society Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 4
    • 14344252373 scopus 로고    scopus 로고
    • Training conditional random fields via gradient tree boosting
    • Banff, Canada
    • T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boosting. In ICML, Banff, Canada, 2004.
    • (2004) ICML
    • Dietterich, T.G.1    Ashenfelter, A.2    Bulatov, Y.3
  • 5
  • 6
    • 0242480914 scopus 로고    scopus 로고
    • Selecting weighting factors in logarithmic opinion pools
    • T. Heskes. Selecting weighting factors in logarithmic opinion pools. In Advances in NIPS, volume 10, 1998.
    • (1998) Advances in NIPS , vol.10
    • Heskes, T.1
  • 7
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative Random Fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert. Discriminative Random Fields: A discriminative framework for contextual interaction in classification. In ICCV, 2003.
    • (2003) ICCV
    • Kumar, S.1    Hebert, M.2
  • 8
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional Random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 10
    • 24644492941 scopus 로고    scopus 로고
    • Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models
    • San Diego, CA, Jun
    • N. Nguyen, D. Phung, S. Venkatesh, and H. H. Bui. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In Proc. CVPR, San Diego, CA, Jun 2005.
    • (2005) Proc. CVPR
    • Nguyen, N.1    Phung, D.2    Venkatesh, S.3    Bui, H.H.4
  • 12
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 13
    • 33745893539 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Conditional models for contextual human motion recognition. In ICCV, 2005.
    • (2005) ICCV
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Metaxas, D.4
  • 14
    • 14344253846 scopus 로고    scopus 로고
    • Dynamic Conditional Random Fields: Factorized probabilistic models for labeling and segmenting sequence data
    • C. A. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic Conditional Random Fields: factorized probabilistic models for labeling and segmenting sequence data. In ICML, 2004.
    • (2004) ICML
    • Sutton, C.A.1    Rohanimanesh, K.2    McCallum, A.3
  • 15
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17, pages 1401-1408. 2005.
    • (2005) NIPS , vol.17 , pp. 1401-1408
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.