-
1
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
Mandelbrot, B.B., and Van Ness, J.W. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10:422-437.
-
(1968)
SIAM Rev.
, vol.10
, pp. 422-437
-
-
Mandelbrot, B.B.1
Van Ness, J.W.2
-
2
-
-
0000821514
-
An inequality of the Holder type connected with Stieltjes integration
-
Young, L.C. 1936. An inequality of the Holder type connected with Stieltjes integration. Acta Math. 67:251-282.
-
(1936)
Acta Math.
, vol.67
, pp. 251-282
-
-
Young, L.C.1
-
3
-
-
0008562738
-
Existence and uniqueness theorems for fBm stochastic differential equations
-
Kleptsyna, M.L., Kloeden, P.E., and Ahn, V.V. 1998. Existence and uniqueness theorems for fBm stochastic differential equations. Problems of Inform. Transmission 34:332-341.
-
(1998)
Problems of Inform. Transmission
, vol.34
, pp. 332-341
-
-
Kleptsyna, M.L.1
Kloeden, P.E.2
Ahn, V.V.3
-
4
-
-
0008562739
-
The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion
-
Kubilius, K. 2000. The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion. Liet. Mat. Rink. 40:104-110.
-
(2000)
Liet. Mat. Rink.
, vol.40
, pp. 104-110
-
-
Kubilius, K.1
-
5
-
-
0000746261
-
Stochastic analysis of fractional Brownian motions
-
Lin, S.J. 1995. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55:121-140.
-
(1995)
Stochastics Stochastics Rep.
, vol.55
, pp. 121-140
-
-
Lin, S.J.1
-
6
-
-
0034258581
-
Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion
-
Ruzmaikina, A.A. 2000. Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion. J. Statist. Phys. 100:1049-1069.
-
(2000)
J. Statist. Phys.
, vol.100
, pp. 1049-1069
-
-
Ruzmaikina, A.A.1
-
7
-
-
0038290919
-
Integration with respect to fractal functions and stochastic calculus i
-
Zähle, M. 1998. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111:333-374.
-
(1998)
Probab. Theory Related Fields
, vol.111
, pp. 333-374
-
-
Zähle, M.1
-
9
-
-
0038771348
-
Differential equations driven by fractional Brownian motion
-
Nualart, D., and Rǎşcanu, A. 2002. Differential equations driven by fractional Brownian motion. Collect. Math. 53:55-81.
-
(2002)
Collect. Math.
, vol.53
, pp. 55-81
-
-
Nualart, D.1
Rǎşcanu, A.2
-
10
-
-
0041026849
-
Integration with respect to fractal functions and stochastic calculus II
-
Zähle, M. 2001. Integration with respect to fractal functions and stochastic calculus II. Math. Nachr. 225:145-183.
-
(2001)
Math. Nachr.
, vol.225
, pp. 145-183
-
-
Zähle, M.1
-
11
-
-
0032347402
-
Differential equations driven by rough signals
-
Lyons, T. 1998. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14:215-310.
-
(1998)
Rev. Mat. Iberoamericana
, vol.14
, pp. 215-310
-
-
Lyons, T.1
-
12
-
-
18744427246
-
Stochastic differential equations for fractional Brownian motions
-
Coutin, L., and Qian, Z. 2000. Stochastic differential equations for fractional Brownian motions. C.R. Acad. Sci. Paris Sér. I Math. 331:75-80.
-
(2000)
C.R. Acad. Sci. Paris Sér. i Math.
, vol.331
, pp. 75-80
-
-
Coutin, L.1
Qian, Z.2
-
13
-
-
0036002985
-
Stochastic analysis, rough paths analysis and fractional Brownian motions
-
Coutin, L., and Qian, Z. 2002. Stochastic analysis, rough paths analysis and fractional Brownian motions. Probab. Theory Related Fields 122:108-140.
-
(2002)
Probab. Theory Related Fields
, vol.122
, pp. 108-140
-
-
Coutin, L.1
Qian, Z.2
-
14
-
-
0038433460
-
Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2
-
Alòs, E., León, J.A., and Nualart, D. 2001. Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J. Math. 5:609-632.
-
(2001)
Taiwanesse J. Math.
, vol.5
, pp. 609-632
-
-
Alòs, E.1
León, J.A.2
Nualart, D.3
-
15
-
-
17744417083
-
Semilinear fractional stochastic differential equations
-
León, J.A., and Tudor, C. 2002. Semilinear fractional stochastic differential equations. Bol. Soc. Mat. Mexicana 8:205-226.
-
(2002)
Bol. Soc. Mat. Mexicana
, vol.8
, pp. 205-226
-
-
León, J.A.1
Tudor, C.2
-
16
-
-
21344479524
-
Forward, backward and symmetric stochastic integration
-
Russo, F., and Vallois, P. 1993. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97:403-421.
-
(1993)
Probab. Theory Related Fields
, vol.97
, pp. 403-421
-
-
Russo, F.1
Vallois, P.2
-
17
-
-
0011279843
-
A linear stochastic integral equation containing the extended Itô integral
-
Shiota, Y. 1986. A linear stochastic integral equation containing the extended Itô integral. Math. Rep. Toyana Univ. 9:43-65.
-
(1986)
Math. Rep. Toyana Univ.
, vol.9
, pp. 43-65
-
-
Shiota, Y.1
-
18
-
-
13344283509
-
Stochastic integration with respect to fractional Brownian motion and applications
-
González-Barrios.T.M., et al. (eds), Contemporary Mathematics 336. Amer. Math. Soc., Providence, RI
-
Nualart, D. 2003. Stochastic integration with respect to fractional Brownian motion and applications. In: Stochastic Models, Proceedings of the Seventh Symposium on Probability and Stochastic Processes. González- Barrios.T.M., et al. (eds), Contemporary Mathematics 336. Amer. Math. Soc., Providence, RI, 3-39.
-
(2003)
Stochastic Models, Proceedings of the Seventh Symposium on Probability and Stochastic Processes
, pp. 3-39
-
-
Nualart, D.1
-
19
-
-
33750073208
-
Are classes of deterministic integrands for fractional Brownian motion on an interval complete?
-
Pipiras, V., and Taqqu, M.S. 2001. Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7:873-897.
-
(2001)
Bernoulli
, vol.7
, pp. 873-897
-
-
Pipiras, V.1
Taqqu, M.S.2
-
21
-
-
13344294352
-
An extension of the divergence operator for Gaussian processes
-
León, J.A., and Nualart, D. 2005. An extension of the divergence operator for Gaussian processes. Stochastic Process. Appl. 115:481-492.
-
(2005)
Stochastic Process. Appl.
, vol.115
, pp. 481-492
-
-
León, J.A.1
Nualart, D.2
-
22
-
-
26844554101
-
Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1/2)
-
Cheridito, P., and Nualart, D. 2005. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1/2). Ann. Inst. H. Poincaré Probab. Statist. 41:1049-1081.
-
(2005)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.41
, pp. 1049-1081
-
-
Cheridito, P.1
Nualart, D.2
-
23
-
-
18144416186
-
Integral transformations and anticipative calculus for fractional Brownian motions
-
Hu, Y. 2005. Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Amer. Math. Soc. 175:825.
-
(2005)
Mem. Amer. Math. Soc.
, vol.175
, pp. 825
-
-
Hu, Y.1
-
24
-
-
0042637937
-
Stochastic analysis of the fractional Brownian motion
-
Decreusefond, L., and Üstünel, A.S. 1999. Stochastic analysis of the fractional Brownian motion. Potential Analysis 10:177-214.
-
(1999)
Potential Analysis
, vol.10
, pp. 177-214
-
-
Decreusefond, L.1
Üstünel, A.S.2
-
25
-
-
0013113290
-
On the link between fractional and stochastic calculus
-
Bremen 1997. Cravel, H., and Gundlach, M. (eds.), Springer
-
Zähle, M. 1999. On the link between fractional and stochastic calculus. In: Stochastic Dynamics. Bremen 1997. Cravel, H., and Gundlach, M. (eds.), Springer, 305-325.
-
(1999)
Stochastic Dynamics
, pp. 305-325
-
-
Zähle, M.1
|