메뉴 건너뛰기




Volumn 25, Issue 1, 2007, Pages 105-126

Linear stochastic differential equations driven by a fractional Brownian motion with hurst parameter less than 1/2

Author keywords

Chaotic representation; Divergence operator for Gaussian processes; Fractional Brownian motion; Fractional derivatives and integrals

Indexed keywords


EID: 33845393304     PISSN: 07362994     EISSN: 15329356     Source Type: Journal    
DOI: 10.1080/07362990601052052     Document Type: Article
Times cited : (13)

References (25)
  • 1
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • Mandelbrot, B.B., and Van Ness, J.W. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10:422-437.
    • (1968) SIAM Rev. , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 2
    • 0000821514 scopus 로고
    • An inequality of the Holder type connected with Stieltjes integration
    • Young, L.C. 1936. An inequality of the Holder type connected with Stieltjes integration. Acta Math. 67:251-282.
    • (1936) Acta Math. , vol.67 , pp. 251-282
    • Young, L.C.1
  • 3
    • 0008562738 scopus 로고    scopus 로고
    • Existence and uniqueness theorems for fBm stochastic differential equations
    • Kleptsyna, M.L., Kloeden, P.E., and Ahn, V.V. 1998. Existence and uniqueness theorems for fBm stochastic differential equations. Problems of Inform. Transmission 34:332-341.
    • (1998) Problems of Inform. Transmission , vol.34 , pp. 332-341
    • Kleptsyna, M.L.1    Kloeden, P.E.2    Ahn, V.V.3
  • 4
    • 0008562739 scopus 로고    scopus 로고
    • The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion
    • Kubilius, K. 2000. The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion. Liet. Mat. Rink. 40:104-110.
    • (2000) Liet. Mat. Rink. , vol.40 , pp. 104-110
    • Kubilius, K.1
  • 5
    • 0000746261 scopus 로고
    • Stochastic analysis of fractional Brownian motions
    • Lin, S.J. 1995. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55:121-140.
    • (1995) Stochastics Stochastics Rep. , vol.55 , pp. 121-140
    • Lin, S.J.1
  • 6
    • 0034258581 scopus 로고    scopus 로고
    • Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion
    • Ruzmaikina, A.A. 2000. Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion. J. Statist. Phys. 100:1049-1069.
    • (2000) J. Statist. Phys. , vol.100 , pp. 1049-1069
    • Ruzmaikina, A.A.1
  • 7
    • 0038290919 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus i
    • Zähle, M. 1998. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111:333-374.
    • (1998) Probab. Theory Related Fields , vol.111 , pp. 333-374
    • Zähle, M.1
  • 9
    • 0038771348 scopus 로고    scopus 로고
    • Differential equations driven by fractional Brownian motion
    • Nualart, D., and Rǎşcanu, A. 2002. Differential equations driven by fractional Brownian motion. Collect. Math. 53:55-81.
    • (2002) Collect. Math. , vol.53 , pp. 55-81
    • Nualart, D.1    Rǎşcanu, A.2
  • 10
    • 0041026849 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus II
    • Zähle, M. 2001. Integration with respect to fractal functions and stochastic calculus II. Math. Nachr. 225:145-183.
    • (2001) Math. Nachr. , vol.225 , pp. 145-183
    • Zähle, M.1
  • 11
    • 0032347402 scopus 로고    scopus 로고
    • Differential equations driven by rough signals
    • Lyons, T. 1998. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14:215-310.
    • (1998) Rev. Mat. Iberoamericana , vol.14 , pp. 215-310
    • Lyons, T.1
  • 12
    • 18744427246 scopus 로고    scopus 로고
    • Stochastic differential equations for fractional Brownian motions
    • Coutin, L., and Qian, Z. 2000. Stochastic differential equations for fractional Brownian motions. C.R. Acad. Sci. Paris Sér. I Math. 331:75-80.
    • (2000) C.R. Acad. Sci. Paris Sér. i Math. , vol.331 , pp. 75-80
    • Coutin, L.1    Qian, Z.2
  • 13
    • 0036002985 scopus 로고    scopus 로고
    • Stochastic analysis, rough paths analysis and fractional Brownian motions
    • Coutin, L., and Qian, Z. 2002. Stochastic analysis, rough paths analysis and fractional Brownian motions. Probab. Theory Related Fields 122:108-140.
    • (2002) Probab. Theory Related Fields , vol.122 , pp. 108-140
    • Coutin, L.1    Qian, Z.2
  • 14
    • 0038433460 scopus 로고    scopus 로고
    • Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2
    • Alòs, E., León, J.A., and Nualart, D. 2001. Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J. Math. 5:609-632.
    • (2001) Taiwanesse J. Math. , vol.5 , pp. 609-632
    • Alòs, E.1    León, J.A.2    Nualart, D.3
  • 15
    • 17744417083 scopus 로고    scopus 로고
    • Semilinear fractional stochastic differential equations
    • León, J.A., and Tudor, C. 2002. Semilinear fractional stochastic differential equations. Bol. Soc. Mat. Mexicana 8:205-226.
    • (2002) Bol. Soc. Mat. Mexicana , vol.8 , pp. 205-226
    • León, J.A.1    Tudor, C.2
  • 16
    • 21344479524 scopus 로고
    • Forward, backward and symmetric stochastic integration
    • Russo, F., and Vallois, P. 1993. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97:403-421.
    • (1993) Probab. Theory Related Fields , vol.97 , pp. 403-421
    • Russo, F.1    Vallois, P.2
  • 17
    • 0011279843 scopus 로고
    • A linear stochastic integral equation containing the extended Itô integral
    • Shiota, Y. 1986. A linear stochastic integral equation containing the extended Itô integral. Math. Rep. Toyana Univ. 9:43-65.
    • (1986) Math. Rep. Toyana Univ. , vol.9 , pp. 43-65
    • Shiota, Y.1
  • 18
    • 13344283509 scopus 로고    scopus 로고
    • Stochastic integration with respect to fractional Brownian motion and applications
    • González-Barrios.T.M., et al. (eds), Contemporary Mathematics 336. Amer. Math. Soc., Providence, RI
    • Nualart, D. 2003. Stochastic integration with respect to fractional Brownian motion and applications. In: Stochastic Models, Proceedings of the Seventh Symposium on Probability and Stochastic Processes. González- Barrios.T.M., et al. (eds), Contemporary Mathematics 336. Amer. Math. Soc., Providence, RI, 3-39.
    • (2003) Stochastic Models, Proceedings of the Seventh Symposium on Probability and Stochastic Processes , pp. 3-39
    • Nualart, D.1
  • 19
    • 33750073208 scopus 로고    scopus 로고
    • Are classes of deterministic integrands for fractional Brownian motion on an interval complete?
    • Pipiras, V., and Taqqu, M.S. 2001. Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7:873-897.
    • (2001) Bernoulli , vol.7 , pp. 873-897
    • Pipiras, V.1    Taqqu, M.S.2
  • 21
    • 13344294352 scopus 로고    scopus 로고
    • An extension of the divergence operator for Gaussian processes
    • León, J.A., and Nualart, D. 2005. An extension of the divergence operator for Gaussian processes. Stochastic Process. Appl. 115:481-492.
    • (2005) Stochastic Process. Appl. , vol.115 , pp. 481-492
    • León, J.A.1    Nualart, D.2
  • 22
    • 26844554101 scopus 로고    scopus 로고
    • Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1/2)
    • Cheridito, P., and Nualart, D. 2005. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1/2). Ann. Inst. H. Poincaré Probab. Statist. 41:1049-1081.
    • (2005) Ann. Inst. H. Poincaré Probab. Statist. , vol.41 , pp. 1049-1081
    • Cheridito, P.1    Nualart, D.2
  • 23
    • 18144416186 scopus 로고    scopus 로고
    • Integral transformations and anticipative calculus for fractional Brownian motions
    • Hu, Y. 2005. Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Amer. Math. Soc. 175:825.
    • (2005) Mem. Amer. Math. Soc. , vol.175 , pp. 825
    • Hu, Y.1
  • 24
    • 0042637937 scopus 로고    scopus 로고
    • Stochastic analysis of the fractional Brownian motion
    • Decreusefond, L., and Üstünel, A.S. 1999. Stochastic analysis of the fractional Brownian motion. Potential Analysis 10:177-214.
    • (1999) Potential Analysis , vol.10 , pp. 177-214
    • Decreusefond, L.1    Üstünel, A.S.2
  • 25
    • 0013113290 scopus 로고    scopus 로고
    • On the link between fractional and stochastic calculus
    • Bremen 1997. Cravel, H., and Gundlach, M. (eds.), Springer
    • Zähle, M. 1999. On the link between fractional and stochastic calculus. In: Stochastic Dynamics. Bremen 1997. Cravel, H., and Gundlach, M. (eds.), Springer, 305-325.
    • (1999) Stochastic Dynamics , pp. 305-325
    • Zähle, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.