-
1
-
-
0038433460
-
Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2
-
E. Alòs J.A. León D. Nualart Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2, Taiwanese J. Math. 5 2001 609-632
-
(2001)
Taiwanese J. Math.
, vol.5
, pp. 609-632
-
-
Alòs, E.1
León, J.A.2
Nualart, D.3
-
2
-
-
0000338690
-
Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2
-
E. Alòs O. Mazet D. Nualart Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 Stoch. Proc. Appl. 86 2000 121-139
-
(2000)
Stoch. Proc. Appl.
, vol.86
, pp. 121-139
-
-
Alòs, E.1
Mazet, O.2
Nualart, D.3
-
3
-
-
0035537291
-
Stochastic calculus with respect to Gaussian processes
-
E. Alòs O. Mazet D. Nualart Stochastic calculus with respect to Gaussian processes Ann. Probab. 29 2001 766-801
-
(2001)
Ann. Probab.
, vol.29
, pp. 766-801
-
-
Alòs, E.1
Mazet, O.2
Nualart, D.3
-
4
-
-
0346718762
-
Stochastic integration with respect to the fractional Brownian motion
-
E. Alòs D. Nualart Stochastic integration with respect to the fractional Brownian motion Stochastics Stochastics Rep. 75 2003 129-152
-
(2003)
Stochastics Stochastics Rep.
, vol.75
, pp. 129-152
-
-
Alòs, E.1
Nualart, D.2
-
5
-
-
0037361234
-
An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter
-
C. Bender An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter Stochastic Processes Appl. 104 2003 81-106
-
(2003)
Stochastic Processes Appl.
, vol.104
, pp. 81-106
-
-
Bender, C.1
-
6
-
-
13344287147
-
An introduction to white noise theory and Malliavin calculus for fractional Brownian motion
-
preprint
-
F. Biagini, B. Øksendal, B.A. Sulem, N. Wallner, An introduction to white noise theory and Malliavin calculus for fractional Brownian motion, preprint, 2003.
-
(2003)
-
-
Biagini, F.1
Øksendal, B.2
Sulem, B.A.3
Wallner, N.4
-
7
-
-
0037270163
-
Stochastic integration with respect to fractional Brownian motion
-
P. Carmona L. Coutin G. Montseny Stochastic integration with respect to fractional Brownian motion Ann. Inst. H. Poincaré 39 2003 27-68
-
(2003)
Ann. Inst. H. Poincaré
, vol.39
, pp. 27-68
-
-
Carmona, P.1
Coutin, L.2
Montseny, G.3
-
8
-
-
13344295177
-
Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2)
-
preprint
-
P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2), preprint, 2002.
-
(2002)
-
-
Cheridito, P.1
Nualart, D.2
-
9
-
-
0036002985
-
Stochastic analysis rough path analysis, and fractional Brownian motions
-
L. Coutin Z. Qian Stochastic analysis rough path analysis, and fractional Brownian motions Probab. Theory Related Fields 122 2002 108-140
-
(2002)
Probab. Theory Related Fields
, vol.122
, pp. 108-140
-
-
Coutin, L.1
Qian, Z.2
-
10
-
-
0042637937
-
Stochastic analysis of the fractional Brownian motion
-
L. Decreusefond A.S. Üstünel Stochastic analysis of the fractional Brownian motion Potential Anal. 10 1999 177-214
-
(1999)
Potential Anal.
, vol.10
, pp. 177-214
-
-
Decreusefond, L.1
Üstünel, A.S.2
-
12
-
-
0032347402
-
Differential equations driven by rough signals
-
T.J. Lyons Differential equations driven by rough signals Rev. Mat. Iberoamericana 14 1998 215-310
-
(1998)
Rev. Mat. Iberoamericana
, vol.14
, pp. 215-310
-
-
Lyons, T.J.1
-
14
-
-
13344283509
-
Stochastic integration with respect to fractional Brownian motion and applications
-
American Mathematical Society, Providence, RI
-
D. Nualart, Stochastic integration with respect to fractional Brownian motion and applications, in: Stochastic Models (Mexico City, 2000), Contemporary Mathematics, vol. 336, American Mathematical Society, Providence, RI, 2003, pp. 3-39.
-
(2003)
Stochastic Models (Mexico City, 2000), Contemporary Mathematics
, vol.336
, pp. 3-39
-
-
Nualart, D.1
-
15
-
-
33750073208
-
Are classes of deterministic integrands for fractional Brownian motion on an interval complete?
-
V. Pipiras M.S. Taqqu Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7 2001 873-897
-
(2001)
Bernoulli
, vol.7
, pp. 873-897
-
-
Pipiras, V.1
Taqqu, M.S.2
-
18
-
-
0000821514
-
An inequality of the Hölder type connected with Stieltjes integration
-
L.C. Young An inequality of the Hölder type connected with Stieltjes integration Acta Math. 67 1936 251-282
-
(1936)
Acta Math.
, vol.67
, pp. 251-282
-
-
Young, L.C.1
-
19
-
-
0038290919
-
Integration with respect to fractal functions and stochastic calculus I
-
M. Zä, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields 111(1998) 333-374.
-
(1998)
Probab. Theory Related Fields
, vol.111
, pp. 333-374
-
-
Zähle, M.1
|