-
1
-
-
0347172110
-
OPTICS: Ordering points to identify clustering structure
-
In ACM Press 23
-
M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify clustering structure. In Proceedings of the 1999 International Conference on Management of Data, pages 49-60. ACM Press, 1999. 23
-
(1999)
Proceedings of the 1999 International Conference on Management of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.-P.3
Sander, J.4
-
3
-
-
3242787931
-
Empirical observations of probabilistic heuristics for the clustering problem
-
Technical Report TR-97-018, International Computer Science Institute, University of California, Berkeley, CA, 22
-
J. Bilmes, A. Vahdat, W. Hsu, and E.-J. Im. Empirical observations of probabilistic heuristics for the clustering problem. Technical Report TR-97-018, International Computer Science Institute, University of California, Berkeley, CA, 1997. 22
-
(1997)
-
-
Bilmes, J.1
Vahdat, A.2
Hsu, W.3
Im, E.-J.4
-
4
-
-
0005871804
-
PESA-II: Region-based selection in evolutionary multiobjective optimization
-
In Morgan Kaufmann Publishers 27
-
D. W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 283-290. Morgan Kaufmann Publishers, 2001. 27
-
(2001)
Proceedings of the Genetic and Evolutionary Computation Conference
, pp. 283-290
-
-
Corne, D.W.1
Jerram, N.R.2
Knowles, J.D.3
Oates, M.J.4
-
13
-
-
24344488919
-
Multiobjective clustering with automatic determination of the number of clusters
-
Technical Report TR-COMPSYSBIO-2004-02, UMIST, Manchester, UK, 25. 30
-
J. Handl and J. Knowles. Multiobjective clustering with automatic determination of the number of clusters. Technical Report TR-COMPSYSBIO-2004-02, UMIST, Manchester, UK, 2004. 25, 30
-
(2004)
-
-
Handl, J.1
Knowles, J.2
-
15
-
-
27144470695
-
Improvements to the scalability of multiobjective clustering
-
In IEEE Press, 25, 35
-
J. Handl and J. Knowles. Improvements to the scalability of multiobjective clustering. In IEEE Congress on Evolutionary Computation, pages 632-639. IEEE Press, 2005. 25, 35
-
(2005)
IEEE Congress on Evolutionary Computation
, pp. 632-639
-
-
Handl, J.1
Knowles, J.2
-
16
-
-
25144456056
-
Computational cluster validation in post-genomic data analysis
-
23
-
J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21:3201-3212, 2005. 23
-
(2005)
Bioinformatics
, vol.21
, pp. 3201-3212
-
-
Handl, J.1
Knowles, J.2
Kell, D.B.3
-
17
-
-
0003684449
-
-
Springer-Verlag, 22, 23
-
T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: Data mining, inference and prediction. Springer-Verlag, 2001. 22, 23
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
18
-
-
0000008146
-
Comparing partitions
-
46
-
A. Hubert. Comparing partitions. Journal of Classification, 2:193-198, 1985. 46
-
(1985)
Journal of Classification
, vol.2
, pp. 193-198
-
-
Hubert, A.1
-
19
-
-
84893405732
-
Data clustering: A review
-
22, 23
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31:264-323, 1999. 22, 23
-
(1999)
ACM Computing Surveys
, vol.31
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
24
-
-
0033204902
-
An empirical comparison of four initialization methods for the k-means algorithm
-
47
-
J. M. Pena, J. A. Lozana, and P. Larranaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 20:1027-1040, 1999. 47
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1027-1040
-
-
Pena, J.M.1
Lozana, J.A.2
Larranaga, P.3
-
26
-
-
0023453329
-
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
-
24, 46
-
P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987. 24, 46
-
(1987)
Journal of Computational and Applied Mathematics
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
27
-
-
0003998476
-
Cubic clustering criterion
-
Technical report, SAS Technical Report A-108, Cary, NC: SAS Institute Inc, 37
-
W. S. Sarle. Cubic clustering criterion. Technical report, SAS Technical Report A-108, Cary, NC: SAS Institute Inc, 1983. 37
-
(1983)
-
-
Sarle, W.S.1
-
28
-
-
0041965980
-
Cluster ensembles - A knowledge reuse framework for combining multiple partitions
-
23
-
A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research, 3:583-617, 2002. 23
-
(2002)
Journal on Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
31
-
-
33845286383
-
Clustering ensembles: Models of consensus and weak partitions
-
Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 23
-
A. Topchy, A. K. Jain, and W. Punch. Clustering ensembles: Models of consensus and weak partitions. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 23
-
(2004)
-
-
Topchy, A.1
Jain, A.K.2
Punch, W.3
-
32
-
-
0003769283
-
The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval
-
PhD thesis, Department of Computer Science, Cornell University, 23
-
E. Vorhees. The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval. PhD thesis, Department of Computer Science, Cornell University, 1985. 23
-
(1985)
-
-
Vorhees, E.1
-
33
-
-
0002338687
-
A genetic algorithm tutorial
-
31
-
D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65-85, 1994. 31
-
(1994)
Statistics and Computing
, vol.4
, pp. 65-85
-
-
Whitley, D.1
|