메뉴 건너뛰기




Volumn 16, Issue , 2006, Pages 21-47

Multi-objective clustering and cluster validation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845331424     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/11399346_2     Document Type: Article
Times cited : (35)

References (34)
  • 3
    • 3242787931 scopus 로고    scopus 로고
    • Empirical observations of probabilistic heuristics for the clustering problem
    • Technical Report TR-97-018, International Computer Science Institute, University of California, Berkeley, CA, 22
    • J. Bilmes, A. Vahdat, W. Hsu, and E.-J. Im. Empirical observations of probabilistic heuristics for the clustering problem. Technical Report TR-97-018, International Computer Science Institute, University of California, Berkeley, CA, 1997. 22
    • (1997)
    • Bilmes, J.1    Vahdat, A.2    Hsu, W.3    Im, E.-J.4
  • 13
    • 24344488919 scopus 로고    scopus 로고
    • Multiobjective clustering with automatic determination of the number of clusters
    • Technical Report TR-COMPSYSBIO-2004-02, UMIST, Manchester, UK, 25. 30
    • J. Handl and J. Knowles. Multiobjective clustering with automatic determination of the number of clusters. Technical Report TR-COMPSYSBIO-2004-02, UMIST, Manchester, UK, 2004. 25, 30
    • (2004)
    • Handl, J.1    Knowles, J.2
  • 15
    • 27144470695 scopus 로고    scopus 로고
    • Improvements to the scalability of multiobjective clustering
    • In IEEE Press, 25, 35
    • J. Handl and J. Knowles. Improvements to the scalability of multiobjective clustering. In IEEE Congress on Evolutionary Computation, pages 632-639. IEEE Press, 2005. 25, 35
    • (2005) IEEE Congress on Evolutionary Computation , pp. 632-639
    • Handl, J.1    Knowles, J.2
  • 16
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • 23
    • J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21:3201-3212, 2005. 23
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 18
  • 24
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • 47
    • J. M. Pena, J. A. Lozana, and P. Larranaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 20:1027-1040, 1999. 47
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozana, J.A.2    Larranaga, P.3
  • 26
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • 24, 46
    • P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987. 24, 46
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 27
    • 0003998476 scopus 로고
    • Cubic clustering criterion
    • Technical report, SAS Technical Report A-108, Cary, NC: SAS Institute Inc, 37
    • W. S. Sarle. Cubic clustering criterion. Technical report, SAS Technical Report A-108, Cary, NC: SAS Institute Inc, 1983. 37
    • (1983)
    • Sarle, W.S.1
  • 28
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • 23
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research, 3:583-617, 2002. 23
    • (2002) Journal on Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 31
    • 33845286383 scopus 로고    scopus 로고
    • Clustering ensembles: Models of consensus and weak partitions
    • Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 23
    • A. Topchy, A. K. Jain, and W. Punch. Clustering ensembles: Models of consensus and weak partitions. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 23
    • (2004)
    • Topchy, A.1    Jain, A.K.2    Punch, W.3
  • 32
    • 0003769283 scopus 로고
    • The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval
    • PhD thesis, Department of Computer Science, Cornell University, 23
    • E. Vorhees. The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval. PhD thesis, Department of Computer Science, Cornell University, 1985. 23
    • (1985)
    • Vorhees, E.1
  • 33
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • 31
    • D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65-85, 1994. 31
    • (1994) Statistics and Computing , vol.4 , pp. 65-85
    • Whitley, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.