메뉴 건너뛰기




Volumn 152, Issue 3, 2004, Pages 675-692

More on maximal and minimal ranks of Schur complements with applications

Author keywords

Generalized inverse; Maximal rank; Minimal rank; Rank invariance; Schur complement

Indexed keywords

INVERSE PROBLEMS; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; THEOREM PROVING;

EID: 2342651438     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(03)00585-X     Document Type: Article
Times cited : (89)

References (21)
  • 1
    • 0000862711 scopus 로고
    • Generalized Schur complements
    • Ando T. Generalized Schur complements. Linear Algebra Appl. 27:1979;173-186.
    • (1979) Linear Algebra Appl. , vol.27 , pp. 173-186
    • Ando, T.1
  • 2
    • 0004508311 scopus 로고
    • Rank invariance criterion and its applications to the unified theory of least squares
    • Baksalary J.K., Mathew T. Rank invariance criterion and its applications to the unified theory of least squares. Linear Algebra Appl. 127:1990;393-401.
    • (1990) Linear Algebra Appl. , vol.127 , pp. 393-401
    • Baksalary, J.K.1    Mathew, T.2
  • 4
    • 1642324861 scopus 로고
    • On generalized inverses of partitioned matrices
    • Bhimasankaram P. On generalized inverses of partitioned matrices. Sankhyā Ser. A. 33:1971;311-314.
    • (1971) Sankhyā Ser. A , vol.33 , pp. 311-314
    • Bhimasankaram, P.1
  • 5
    • 0035587785 scopus 로고    scopus 로고
    • Unicity of minimal rank completions for tri-diagonal partial block matrices
    • Bostian A.A., Woerdeman H.J. Unicity of minimal rank completions for tri-diagonal partial block matrices. Linear Algebra Appl. 325:2001;23-55.
    • (2001) Linear Algebra Appl. , vol.325 , pp. 23-55
    • Bostian, A.A.1    Woerdeman, H.J.2
  • 7
    • 0000741454 scopus 로고
    • What are Schur complements, anyway?
    • Carlson D. What are Schur complements, anyway? Linear Algebra Appl. 74:1986;257-275.
    • (1986) Linear Algebra Appl. , vol.74 , pp. 257-275
    • Carlson, D.1
  • 8
    • 0015977083 scopus 로고
    • A generalization of the Schur complements by means of the Moore-Penrose inverse
    • Carlson D., Haynsworth E., Markham T. A generalization of the Schur complements by means of the Moore-Penrose inverse. SIAM J. Appl. Math. 26:1974;169-179.
    • (1974) SIAM J. Appl. Math. , vol.26 , pp. 169-179
    • Carlson, D.1    Haynsworth, E.2    Markham, T.3
  • 9
    • 1642394643 scopus 로고
    • Remarks on the Schur complement
    • Fiedler M. Remarks on the Schur complement. Linear Algebra Appl. 39:1981;189-195.
    • (1981) Linear Algebra Appl. , vol.39 , pp. 189-195
    • Fiedler, M.1
  • 10
    • 84859529472 scopus 로고
    • Equalities and inequalities for ranks of matrices
    • Marsaglia G., Styan G.P.H. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra. 2:1974;269-292.
    • (1974) Linear Multilinear Algebra , vol.2 , pp. 269-292
    • Marsaglia, G.1    Styan, G.P.H.2
  • 11
    • 0041568115 scopus 로고
    • Schur complements and statistics
    • Ouellette D.V. Schur complements and statistics. Linear Algebra Appl. 36:1981;187-295.
    • (1981) Linear Algebra Appl. , vol.36 , pp. 187-295
    • Ouellette, D.V.1
  • 12
    • 1942443963 scopus 로고
    • Nullities of submatrices of the Moore-Penrose inverse
    • Robinson D.W. Nullities of submatrices of the Moore-Penrose inverse. Linear Algebra Appl. 94:1987;127-132.
    • (1987) Linear Algebra Appl. , vol.94 , pp. 127-132
    • Robinson, D.W.1
  • 13
    • 1942540126 scopus 로고
    • Calculating formulas for the ranks of submatrices in the Moore-Penrose inverse of a matrix
    • Tian Y. Calculating formulas for the ranks of submatrices in the Moore-Penrose inverse of a matrix. J. Beijing Polytech. Univ. 18:1992;84-92.
    • (1992) J. Beijing Polytech. Univ. , vol.18 , pp. 84-92
    • Tian, Y.1
  • 14
    • 0141939927 scopus 로고    scopus 로고
    • How to characterize equalities for the Moore-Penrose inverse of a matrix
    • Tian Y. How to characterize equalities for the Moore-Penrose inverse of a matrix. Kyungpook Math. J. 41:2001;1-15.
    • (2001) Kyungpook Math. J. , vol.41 , pp. 1-15
    • Tian, Y.1
  • 15
    • 0036622703 scopus 로고    scopus 로고
    • The minimal rank completion of a 3 × 3 partial block matrix
    • Tian Y. The minimal rank completion of a 3. × 3 partial block matrix Linear Multilinear Algebra. 50:2002;125-131.
    • (2002) Linear Multilinear Algebra , vol.50 , pp. 125-131
    • Tian, Y.1
  • 16
    • 0037892144 scopus 로고    scopus 로고
    • The maximal and minimal ranks of some expressions of generalized inverses of matrices
    • Tian Y. The maximal and minimal ranks of some expressions of generalized inverses of matrices. Southeast Asian Bull. Math. 25:2002;745-755.
    • (2002) Southeast Asian Bull. Math. , vol.25 , pp. 745-755
    • Tian, Y.1
  • 17
    • 0038568318 scopus 로고    scopus 로고
    • Upper and lower bounds for ranks of matrix expressions using generalized inverses
    • Tian Y. Upper and lower bounds for ranks of matrix expressions using generalized inverses. Linear Algebra Appl. 355:2002;187-214.
    • (2002) Linear Algebra Appl. , vol.355 , pp. 187-214
    • Tian, Y.1
  • 18
    • 0141996327 scopus 로고    scopus 로고
    • Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products
    • in press
    • Y. Tian, Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products, Appl. Math. Comput., in press.
    • Appl. Math. Comput.
    • Tian, Y.1
  • 19
    • 3042598385 scopus 로고    scopus 로고
    • Rank equalities for block matrices and their Moore-Penrose inverses
    • in press
    • Y. Tian, Rank equalities for block matrices and their Moore-Penrose inverses, Houston J. Math., in press.
    • Houston J. Math.
    • Tian, Y.1
  • 21
    • 38249016295 scopus 로고
    • Some generalized forms of least squares g -inverse, minimum norm g -inverse, and Moore-Penrose inverse matrices
    • Yanai H. Some generalized forms of least squares. g -inverse, minimum norm g -inverse, and Moore-Penrose inverse matrices Comput. Statist. Data Anal. 10:1990;251-260.
    • (1990) Comput. Statist. Data Anal. , vol.10 , pp. 251-260
    • Yanai, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.