메뉴 건너뛰기




Volumn 6365, Issue , 2006, Pages

Can multiresolution fusion techniques improve classification accuracy?

Author keywords

Automatic classification; Multiresolution fusion; Remote sensing; Very high geometrical resolution images

Indexed keywords

CLASSIFIERS; MERGING; NONLINEAR EQUATIONS; REMOTE SENSING; SENSORS; SPECTRUM ANALYZERS;

EID: 33751417628     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.691208     Document Type: Conference Paper
Times cited : (21)

References (16)
  • 2
    • 0025573209 scopus 로고
    • The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
    • W. Carper, T. Lillesand, and R. Kiefer, "The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data," Photogrammetric Engineering and Remote Sensing 56, pp. 459-467, 1990.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 459-467
    • Carper, W.1    Lillesand, T.2    Kiefer, R.3
  • 3
    • 33244495276 scopus 로고    scopus 로고
    • Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening
    • U.S. Pat. Office, US Patent 6,011,875, Washington, DC
    • C. A. Laben and B. V. Brower, "Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening," U.S. Pat. Office, US Patent 6,011,875, Washington, DC, 2000.
    • (2000)
    • Laben, C.A.1    Brower, B.V.2
  • 4
    • 34948870440 scopus 로고    scopus 로고
    • Enhanced Gram-Schmidt spectral sharpening based on multivariate regression of MS and Pan data
    • accepted for publication
    • B. Aiazzi, S. Baronti, M. Selva, and L. Alparone, "Enhanced Gram-Schmidt spectral sharpening based on multivariate regression of MS and Pan data," Proc. IEEE IGARSS'06, 2006, accepted for publication.
    • (2006) Proc. IEEE IGARSS'06
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3    Alparone, L.4
  • 5
    • 33747029533 scopus 로고    scopus 로고
    • Pan-sharpening of very high resolution multispectral images using genetic algorithms
    • A. Garzelli and F. Nencini, "Pan-sharpening of very high resolution multispectral images using genetic algorithms," Int. Journal of Remote Sensing 27(15), pp. 3273-3292, 2006.
    • (2006) Int. Journal of Remote Sensing , vol.27 , Issue.15 , pp. 3273-3292
    • Garzelli, A.1    Nencini, F.2
  • 6
    • 0025919780 scopus 로고
    • Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan
    • P. Chavez Jr, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan," Photogrammetric Engineering and Remote Sensing 57(3), pp. 295-303, 1991.
    • (1991) Photogrammetric Engineering and Remote Sensing , vol.57 , Issue.3 , pp. 295-303
    • Chavez Jr., P.1    Sides, S.2    Anderson, J.3
  • 9
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," Geoscience and Remote Sensing, IEEE Transactions on 42(8), pp. 1778-1790, 2004.
    • (2004) Geoscience and Remote Sensing, IEEE Transactions on , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 11
    • 33751428624 scopus 로고    scopus 로고
    • RSI, "ENVI user manual," (URL: http://www.RSInc.com/envi)
    • ENVI User Manual
  • 14
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing images with support vector machines
    • F. Melgani, L. Bruzzone, "Classification of hyperspectral remote-sensing images with support vector machines", Geoscience and Remote Sensing, IEEE Transactions on, 42(8), pp: 1778-1790, 2004.
    • (2004) Geoscience and Remote Sensing, IEEE Transactions on , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 30344473619 scopus 로고    scopus 로고
    • An ensemble-driven k-NN approach to ill-posed classification problems
    • L. Bruzzone, M. Chi, "An ensemble-driven k-NN approach to ill-posed classification problems," Pattern Recognition Letters, 27(4), pp. 301-307, 2006
    • (2006) Pattern Recognition Letters , vol.27 , Issue.4 , pp. 301-307
    • Bruzzone, L.1    Chi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.