-
1
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition
-
Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
2
-
-
0002740437
-
Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-dimode factor analysis
-
Harshman RA. Foundations of the PARAFAC procedure: models and conditions for an 'explanatory' multi-dimode factor analysis. UCLA Working Papers Phonet. 1970; 16: 1-84.
-
(1970)
UCLA Working Papers Phonet
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
3
-
-
0002740439
-
Determination and proof of minimum uniqueness conditions for PARAFAC1
-
Harshman RA. Determination and proof of minimum uniqueness conditions for PARAFAC1. UCLA Working Papers Phonet. 1972; 22: 111-117.
-
(1972)
UCLA Working Papers Phonet
, vol.22
, pp. 111-117
-
-
Harshman, R.A.1
-
4
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
Kruskal JB. Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra Appl. 1977; 18: 95-138.
-
(1977)
Linear Algebra Appl.
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
5
-
-
0002258223
-
The PARAFAC model for three-way factor analysis and multidimensional scaling
-
Law HG, Snyder CW, Hattie JA, McDonald RP (eds). Praeger: New York
-
Harshman RA, Lundy ME. The PARAFAC model for three-way factor analysis and multidimensional scaling. In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Hattie JA, McDonald RP (eds). Praeger: New York, 1984; 122-215.
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 122-215
-
-
Harshman, R.A.1
Lundy, M.E.2
-
6
-
-
0033653594
-
On the uniqueness of multilinear decomposition of N-way arrays
-
Sidiropoulos ND, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemometrics 2000; 14: 229-239.
-
(2000)
J. Chemometrics
, vol.14
, pp. 229-239
-
-
Sidiropoulos, N.D.1
Bro, R.2
-
8
-
-
0041595584
-
Simplicity of core arrays in three-way principal component analysis and the typical rank of P × Q × 2 arrays
-
Ten Berge JMF, Kiers HAL. Simplicity of core arrays in three-way principal component analysis and the typical rank of P × Q × 2 arrays. Linear Algebra Appl. 1999; 294: 169-179.
-
(1999)
Linear Algebra Appl.
, vol.294
, pp. 169-179
-
-
Ten Berge, J.M.F.1
Kiers, H.A.L.2
-
9
-
-
0034559666
-
The typical rank of tall three-way arrays
-
Ten Berge JMF. The typical rank of tall three-way arrays. Psychometrika 2000; 65: 525-532.
-
(2000)
Psychometrika
, vol.65
, pp. 525-532
-
-
Ten Berge, J.M.F.1
-
10
-
-
0001837391
-
Rank, decomposition, and uniqueness for 3-way and N-way arrays
-
Coppi R, Bolasco S (eds). Elsevier: Amsterdam
-
Kruskal JB. Rank, decomposition, and uniqueness for 3-way and N-way arrays. In Multiway Data Analysis, Coppi R, Bolasco S (eds). Elsevier: Amsterdam, 1989; 8-18.
-
(1989)
Multiway Data Analysis
, pp. 8-18
-
-
Kruskal, J.B.1
-
11
-
-
0343939679
-
How can I know if it's real? A catalog of diagnostics for use with three-mode factor analysis and multidimensional scaling
-
Law HG, Snyder CW, Hattie JA, McDonald RP (eds). Praeger: New York
-
Harshman RA. How can I know if it's real? A catalog of diagnostics for use with three-mode factor analysis and multidimensional scaling. In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Hattie JA, McDonald RP (eds). Praeger: New York, 1984; 566-591.
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 566-591
-
-
Harshman, R.A.1
|