메뉴 건너뛰기




Volumn , Issue , 2006, Pages 251-258

Wireless airtime traffic estimation using a state space model

Author keywords

Autoregressive integrated moving average; Basic structural model; Kalman filter; Mean absolute percentage error

Indexed keywords

BROADBAND NETWORKS; ERROR DETECTION; KALMAN FILTERING; WIRELESS TELECOMMUNICATION SYSTEMS;

EID: 33751096460     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CNSR.2006.58     Document Type: Conference Paper
Times cited : (2)

References (37)
  • 3
    • 1642443208 scopus 로고    scopus 로고
    • Forecasts of the seasonal fractional integrated series
    • O. Darne, V. Guiraud, and M. Terraza. Forecasts of the seasonal fractional integrated series. Journal of Forecasting, 23, issue 1:1-17, 2004.
    • (2004) Journal of Forecasting , vol.23 , Issue.1 , pp. 1-17
    • Darne, O.1    Guiraud, V.2    Terraza, M.3
  • 4
    • 0036816294 scopus 로고    scopus 로고
    • Telecommunications demand forecasting-a review
    • R. Files and V. Kumar. Telecommunications demand forecasting-a review. International Journal of Forecasting, 18, issue 4:489-522, 2002.
    • (2002) International Journal of Forecasting , vol.18 , Issue.4 , pp. 489-522
    • Files, R.1    Kumar, V.2
  • 5
    • 0036495913 scopus 로고    scopus 로고
    • On a family of finite moving-average trend filters for the ends of series
    • A. G. Gray and P. J. Thomson. On a family of finite moving-average trend filters for the ends of series. Journal of Forecasting, 21, issue 2:125-149, 2002.
    • (2002) Journal of Forecasting , vol.21 , Issue.2 , pp. 125-149
    • Gray, A.G.1    Thomson, P.J.2
  • 10
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • J. W. Hansen and R. D. Nelson. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Transaction on neural networks, 8, issue 4:863-873, 1997.
    • (1997) IEEE Transaction on Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.W.1    Nelson, R.D.2
  • 12
    • 0037278855 scopus 로고    scopus 로고
    • Modelling trends in central England temperatures
    • D. I. Harvey and T. C. Mills. Modelling trends in central England temperatures. Journal of Forecasting, 22, issue 1:35-47, 2003.
    • (2003) Journal of Forecasting , vol.22 , Issue.1 , pp. 35-47
    • Harvey, D.I.1    Mills, T.C.2
  • 13
    • 13244283162 scopus 로고    scopus 로고
    • Forecasting time series with long memory and level shifts
    • N. Hyung and P. H. Franses. Forecasting time series with long memory and level shifts. Journal of Forecasting, 24, issue 1:1-16, 2005.
    • (2005) Journal of Forecasting , vol.24 , Issue.1 , pp. 1-16
    • Hyung, N.1    Franses, P.H.2
  • 14
    • 0035389786 scopus 로고    scopus 로고
    • Modelling the development of supply-restricted telecommunications markets
    • T. Islam and D. G. Fiebig. Modelling the development of supply-restricted telecommunications markets. Journal of Forecasting, 20, issue 4:249-264, 2001.
    • (2001) Journal of Forecasting , vol.20 , Issue.4 , pp. 249-264
    • Islam, T.1    Fiebig, D.G.2
  • 15
    • 0036816881 scopus 로고    scopus 로고
    • Modelling multinational telecommunications demand with limited data
    • T. Islam, D. G. Fiebig, and N. Meade. Modelling multinational telecommunications demand with limited data. International Journal of Forecasting, 18, issue 4:605-624, 2002.
    • (2002) International Journal of Forecasting , vol.18 , Issue.4 , pp. 605-624
    • Islam, T.1    Fiebig, D.G.2    Meade, N.3
  • 18
    • 0036815923 scopus 로고    scopus 로고
    • Forecasting telecommunication service subscribers in substitutive and competitive environments
    • D. B. Jun, S. K. Kim, Y. S. Park, M. H. Park, and A. R. Wilson. Forecasting telecommunication service subscribers in substitutive and competitive environments. International Journal of Forecasting, 18, issue 4:561-581, 2002.
    • (2002) International Journal of Forecasting , vol.18 , Issue.4 , pp. 561-581
    • Jun, D.B.1    Kim, S.K.2    Park, Y.S.3    Park, M.H.4    Wilson, A.R.5
  • 20
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 21
    • 3242660615 scopus 로고    scopus 로고
    • Updating ARMA predictions for temporal aggregates
    • S. G. Koreisha and Y. Fang. Updating ARMA predictions for temporal aggregates. Journal of Forecasting, 23, issue 4:275-296, 2004.
    • (2004) Journal of Forecasting , vol.23 , Issue.4 , pp. 275-296
    • Koreisha, S.G.1    Fang, Y.2
  • 22
    • 0035446375 scopus 로고    scopus 로고
    • Creating high frequency national accounts with state space modelling: A monte carlo experiment
    • H. Liu and S. G. Hall. Creating high frequency national accounts with state space modelling: A monte carlo experiment. Journal of Forecasting, 20, issue 6:441-449, 2001.
    • (2001) Journal of Forecasting , vol.20 , Issue.6 , pp. 441-449
    • Liu, H.1    Hall, S.G.2
  • 24
    • 0041382924 scopus 로고    scopus 로고
    • Long memory time series and short term forecasts
    • K. S. Man. Long memory time series and short term forecasts. International Journal of Forecasting, 19, issue 3:477-491, 2003.
    • (2003) International Journal of Forecasting , vol.19 , Issue.3 , pp. 477-491
    • Man, K.S.1
  • 25
    • 0028055346 scopus 로고
    • Can neural networks applied to time series forecasting learn seasonal patterns: An empirical investigation
    • M. Nelson, T. Hill, B. Remus, and M. O'Connor. Can neural networks applied to time series forecasting learn seasonal patterns: an empirical investigation. In IEEE international conference on system sciences, volume 3, pages 649-655, 1994.
    • (1994) IEEE International Conference on System Sciences , vol.3 , pp. 649-655
    • Nelson, M.1    Hill, T.2    Remus, B.3    O'Connor, M.4
  • 28
    • 0345376899 scopus 로고    scopus 로고
    • A dynamic principal components analysis based on multivariate matrix normal dynamic linear models
    • M. Salvador, J. L. Gallizo, and P. Gargallo. A dynamic principal components analysis based on multivariate matrix normal dynamic linear models. Journal of Forecasting, 22, issue 6-7:457-478, 2003.
    • (2003) Journal of Forecasting , vol.22 , Issue.6-7 , pp. 457-478
    • Salvador, M.1    Gallizo, J.L.2    Gargallo, P.3
  • 29
    • 11144325130 scopus 로고    scopus 로고
    • Comparing the accuracy of density forecasts from competing models
    • L. Sarno and G. Valente. Comparing the accuracy of density forecasts from competing models. Journal of Forecasting, 23, issue 8:541-557, 2004.
    • (2004) Journal of Forecasting , vol.23 , Issue.8 , pp. 541-557
    • Sarno, L.1    Valente, G.2
  • 30
    • 0004217136 scopus 로고
    • Statistical Sciences, Inc., Seattle, WA.
    • Statistical Sciences, Inc., Seattle, WA. S-PLUS User's Manual, 1991.
    • (1991) S-PLUS User's Manual
  • 31
    • 4744368723 scopus 로고    scopus 로고
    • Smooth transition exponential smoothing
    • G. W. Taylor. Smooth transition exponential smoothing. Journal of Forecasting, 23, issue 6:385-404, 2004.
    • (2004) Journal of Forecasting , vol.23 , Issue.6 , pp. 385-404
    • Taylor, G.W.1
  • 32
    • 0036815921 scopus 로고    scopus 로고
    • An unobserved component model for multi-rate forecasting of telephone call demand: The design of a forecasting support system
    • W. Tych, D. J. Pedregal, P. C. Young, and J. Davies. An unobserved component model for multi-rate forecasting of telephone call demand: the design of a forecasting support system. International Journal of forecasting, 18, issue 4:673-695, 2002.
    • (2002) International Journal of Forecasting , vol.18 , Issue.4 , pp. 673-695
    • Tych, W.1    Pedregal, D.J.2    Young, P.C.3    Davies, J.4
  • 33
    • 33751090389 scopus 로고    scopus 로고
    • X12-ARIMA
    • X12-ARIMA. http://www.census.gov/srd/www/x12a/.
  • 36
    • 0031640660 scopus 로고    scopus 로고
    • Stochastic unobserved component models for adaptive signal extraction and forecasting
    • P. C. Young, W. Tych, and D. J. Pedregal. Stochastic unobserved component models for adaptive signal extraction and forecasting. In IEEE signal processing society workshop, volume 8, pages 234-243, 1998.
    • (1998) IEEE Signal Processing Society Workshop , vol.8 , pp. 234-243
    • Young, P.C.1    Tych, W.2    Pedregal, D.J.3
  • 37
    • 0742271676 scopus 로고    scopus 로고
    • Combining time series models for forecasting
    • H. Zou and Y. Yang. Combining time series models for forecasting. International Journal of Forecasting, 20, issue 1:69-84, 2004.
    • (2004) International Journal of Forecasting , vol.20 , Issue.1 , pp. 69-84
    • Zou, H.1    Yang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.