Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution
De Gelder, L., J. M. Ponciano, Z. Abdo, P. Joyce, L. J. Forney, and E. M. Top. 2004. Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 168:1131-1144.
Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation
Elena, S. F., and R. E. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4:457-469.
Evolution of competitive fitness in experimental populations of E. coli: What makes one genotype a better competitor than another?
Lenski, R. E., J. A. Mongold, P. D. Sniegowski, M. Travisano, F. Vasi, P. J. Gerrish, and T. M. Schmidt. 1998. Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie Leeuwenhoek 73:35-47.
Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations
Lenski, R. E., M. R. Rose, S. C. Simpson, and S. C. Tadler. 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138:1315-1341.
Dynamics of adaptation and diversi-fication: A 10,000-generation experiment with bacterial populations
Lenski, R. E., and M. Travisano. 1994. Dynamics of adaptation and diversi-fication: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91:6808-6814.
SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness
Yeiser, B., E. D. Pepper, M. F. Goodman, and S. E. Finkel. 2002. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci. USA 99:8737-8741.