메뉴 건너뛰기




Volumn 4224 LNCS, Issue , 2006, Pages 1434-1442

Maximum likelihood topology preserving ensembles

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; LEARNING SYSTEMS; SELF ORGANIZING MAPS; STATISTICAL METHODS; TOPOLOGY;

EID: 33750569111     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11875581_170     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 3
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. The Self-Organizing Map. In Proceedings of the IEEE 78 (pp. 1464-1480), 1990.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 6
    • 3543075142 scopus 로고    scopus 로고
    • Maximum and minimum likelihood Hebbian learning for exploratory projection pursuit
    • Corchado, E., MacDonald, D., Fyfe C., Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining Knowledge Discovery 8(3): 203-225 (2004).
    • (2004) Data Mining Knowledge Discovery , vol.8 , Issue.3 , pp. 203-225
    • Corchado, E.1    MacDonald, D.2    Fyfe, C.3
  • 7
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J., Tukey. J.: A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transaction on Computers, Vol. 23 (1974) 881-890.
    • (1974) IEEE Transaction on Computers , vol.23 , pp. 881-890
    • Friedman, J.1    Tukey, J.2
  • 8
    • 18044403793 scopus 로고    scopus 로고
    • Complexity pursuit: Separating interesting components from time series
    • Hyvärinen A.: Complexity Pursuit: Separating Interesting Components from Time Series. Neural Computation, Vol. 13(4) (2001) 883-898.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 883-898
    • Hyvärinen, A.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging Predictors. Machine Learning, 24 (pp. 123-140), 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0036026248 scopus 로고    scopus 로고
    • A theoretical analysis of the limits of majority voting errors for multiple classifier systems
    • Ruta, D. and Gabrys, B. A Theoretical Analysis of the Limits of Majority Voting Errors for Multiple Classifier Systems, Pattern Analysis and Applications, vol. 5, pp. 333-350, 2002.
    • (2002) Pattern Analysis and Applications , vol.5 , pp. 333-350
    • Ruta, D.1    Gabrys, B.2
  • 12
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R.E; Freud, Y; Bartlett, P. and Lee, W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5): 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freud, Y.2    Bartlett, P.3    Lee, W.S.4
  • 13
    • 4344642807 scopus 로고    scopus 로고
    • Learning hybrid neuro-fuzzy classifier models from data: To combine or not to combine?
    • Gabrys, B. Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or not to Combine? Fuzzy Sets and Systems, vol. 147, pp. 39-56, 2004.
    • (2004) Fuzzy Sets and Systems , vol.147 , pp. 39-56
    • Gabrys, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.