-
1
-
-
0033072695
-
Tiling the integers with translates of one finite set
-
Coven, E. M. and Meyerowitz, A, (1999). Tiling the integers with translates of one finite set, J. Algebra 212(1), 161-174.
-
(1999)
J. Algebra
, vol.212
, Issue.1
, pp. 161-174
-
-
Coven, E.M.1
Meyerowitz, A.2
-
2
-
-
33646800548
-
Tiles with no spectra in dimension 4
-
Farkas, B. and Révész, Sz. Gy. (2006). Tiles with no spectra in dimension 4, Math. Scand. 98(1 ), 44-52.
-
(2006)
Math. Scand.
, vol.98
, Issue.1
, pp. 44-52
-
-
Farkas, B.1
Révész, Sz.Gy.2
-
3
-
-
0000758425
-
Commuting self-adjoint partial differential operators and a group theoretic problem
-
Fuglede, B. (1974). Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16, 101-121.
-
(1974)
J. Funct. Anal.
, vol.16
, pp. 101-121
-
-
Fuglede, B.1
-
4
-
-
0742306050
-
The Fuglede spectral conjecture holds for convex planar domains
-
Iosevich, A., Katz, N., and Tao, T. (2003). The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10(5-6), 559-569.
-
(2003)
Math. Res. Lett.
, vol.10
, Issue.5-6
, pp. 559-569
-
-
Iosevich, A.1
Katz, N.2
Tao, T.3
-
5
-
-
0001678028
-
Convex bodies with a point of curvature do not have Fourier bases
-
Iosevich, A., Katz, N. H., and Tao, T. (2001). Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math. 123(1), 115-120.
-
(2001)
Amer. J. Math.
, vol.123
, Issue.1
, pp. 115-120
-
-
Iosevich, A.1
Katz, N.H.2
Tao, T.3
-
6
-
-
0034259257
-
Nonsymmetric convex domains have no basis of exponentials
-
Kolountzakis, M. N. (2000). Nonsymmetric convex domains have no basis of exponentials, Illinois J. Math. 44(3), 542-550.
-
(2000)
Illinois J. Math.
, vol.44
, Issue.3
, pp. 542-550
-
-
Kolountzakis, M.N.1
-
8
-
-
33750530172
-
Complex Hadamard matrices and the spectral set conjecture
-
Kolountzakis, M. N. and Matolcsi, M. (2006). Complex Hadamard matrices and the spectral set conjecture, Collect. Math. Vol. Extra, 281-291.
-
(2006)
Collect. Math.
, vol.EXTRA
, pp. 281-291
-
-
Kolountzakis, M.N.1
Matolcsi, M.2
-
9
-
-
0346273564
-
Spectra of certain types of polynomials and tiling of integers with translates of finite sets
-
Konyagin, S. and Laba, I. (2003). Spectra of certain types of polynomials and tiling of integers with translates of finite sets, J. Number Theory 103(2), 267-280.
-
(2003)
J. Number Theory
, vol.103
, Issue.2
, pp. 267-280
-
-
Konyagin, S.1
Laba, I.2
-
10
-
-
23044531025
-
Fuglede's conjecture for a union of two intervals
-
electronic
-
Laba, I. (2001). Fuglede's conjecture for a union of two intervals. Proc. Amer. Math. Soc. 129(10), 2965-2972 (electronic).
-
(2001)
Proc. Amer. Math. Soc.
, vol.129
, Issue.10
, pp. 2965-2972
-
-
Laba, I.1
-
11
-
-
0036401715
-
The spectral set conjecture and multiplicative properties of roots of polynomials
-
Laba, I. (2002). The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. (2) 65(3), 661-671.
-
(2002)
J. London Math. Soc. (2)
, vol.65
, Issue.3
, pp. 661-671
-
-
Laba, I.1
-
13
-
-
0035594102
-
Universal spectra and Tijdeman's conjecture on factorization of cyclic groups
-
Lagarias, J.C. and Szabó, S. (2001). Universal spectra and Tijdeman's conjecture on factorization of cyclic groups, J. Fourier Anal. Appl. 7(1), 63-70.
-
(2001)
J. Fourier Anal. Appl.
, vol.7
, Issue.1
, pp. 63-70
-
-
Lagarias, J.C.1
Szabó, S.2
-
14
-
-
0031115862
-
Spectral sets and factorizations of finite abelian groups
-
Lagarias, J. C. and Wang, Y. (1997). Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145(1), 73-98.
-
(1997)
J. Funct. Anal.
, vol.145
, Issue.1
, pp. 73-98
-
-
Lagarias, J.C.1
Wang, Y.2
-
15
-
-
26444500165
-
Fuglede's conjecture fails in dimension 4
-
Matolcsi, M. (2005). Fuglede's conjecture fails in dimension 4, Proc. Amer. Math. Soc. 133(10), 3021-3026.
-
(2005)
Proc. Amer. Math. Soc.
, vol.133
, Issue.10
, pp. 3021-3026
-
-
Matolcsi, M.1
-
16
-
-
0035538497
-
Universal spectra, universal tiling sets and the spectral set conjecture
-
Pedersen, S. and Wang, Y. (2001). Universal spectra, universal tiling sets and the spectral set conjecture, Math. Scand. 88(2), 246-256.
-
(2001)
Math. Scand.
, vol.88
, Issue.2
, pp. 246-256
-
-
Pedersen, S.1
Wang, Y.2
-
18
-
-
3543047338
-
Fuglede's conjecture is false in 5 and higher dimensions
-
Tao, T. (2004). Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11(2-3), 251-258.
-
(2004)
Math. Res. Lett.
, vol.11
, Issue.2-3
, pp. 251-258
-
-
Tao, T.1
|