-
1
-
-
0000758425
-
Commuting self-adjoint partial differential operators and a group theoretic problem
-
B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121.
-
(1974)
J. Funct. Anal.
, vol.16
, pp. 101-121
-
-
Fuglede, B.1
-
2
-
-
0001678028
-
Convex bodies with a point of curvature do not have Fourier bases
-
A. Iosevich, N. Katz, T. Tao, Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math. 123 (2001), 115-120.
-
(2001)
Amer. J. Math.
, vol.123
, pp. 115-120
-
-
Iosevich, A.1
Katz, N.2
Tao, T.3
-
6
-
-
0034259257
-
Non-symmetric convex domains have no basis of exponentials
-
M. Kolountzakis, Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), 542-550.
-
(2000)
Illinois J. Math.
, vol.44
, pp. 542-550
-
-
Kolountzakis, M.1
-
7
-
-
0034259550
-
Packing, tiling, orthogonality, and completeness
-
_, Packing, tiling, orthogonality, and completeness, Bull. London Math. Soc. 32 (2000), 589-599.
-
(2000)
Bull. London Math. Soc.
, vol.32
, pp. 589-599
-
-
-
9
-
-
1842584219
-
Tiling and spectral properties of near-cubic domains
-
M. Kolountzakis, I. Łaba, Tiling and spectral properties of near-cubic domains, Studia Math. 160 (2004), 287-299.
-
(2004)
Studia Math.
, vol.160
, pp. 287-299
-
-
Kolountzakis, M.1
Łaba, I.2
-
10
-
-
0141767050
-
A class of non-convex polytopes which admit no orthogonal basis of exponentials
-
M. Kolountzakis, M. Papadimitrakis, A class of non-convex polytopes which admit no orthogonal basis of exponentials, Illinois J Math. 46 (2004). 1227-1232.
-
(2004)
Illinois J Math.
, vol.46
, pp. 1227-1232
-
-
Kolountzakis, M.1
Papadimitrakis, M.2
-
11
-
-
0346273564
-
Spectra of certain types of polynomials and tiling of integers with translates of finite sets
-
S. Konyagin, I. Łaba, Spectra of certain types of polynomials and tiling of integers with translates of finite sets, J. Number Theory, 103 (2003), 267-280.
-
(2003)
J. Number Theory
, vol.103
, pp. 267-280
-
-
Konyagin, S.1
Łaba, I.2
-
12
-
-
23044531025
-
Fuglede's conjecture for a union of two intervals
-
I. Łaba, Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), 2965-2972.
-
(2001)
Proc. Amer. Math. Soc.
, vol.129
, pp. 2965-2972
-
-
Łaba, I.1
-
13
-
-
0036401715
-
The spectral set conjecture and multiplicative properties of roots of polynomials
-
_, The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. 65 (2002), 661-671.
-
(2002)
J. London Math. Soc
, vol.65
, pp. 661-671
-
-
-
14
-
-
84967791495
-
Keller's cube tiling conjecture is false in high dimensions
-
J. Lagarias, P. Shor, Keller's cube tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc. 27 (1992), 279-283.
-
(1992)
Bull. Amer. Math. Soc.
, vol.27
, pp. 279-283
-
-
Lagarias, J.1
Shor, P.2
-
15
-
-
0035594102
-
Universal spectra and Tijdeman's conjecture on factorization of cyclic groups
-
J. Lagarias, S. Szabó, Universal spectra and Tijdeman's conjecture on factorization of cyclic groups, J. Fourier Anal. Appl. 7 (2001), 63-70.
-
(2001)
J. Fourier Anal. Appl.
, vol.7
, pp. 63-70
-
-
Lagarias, J.1
Szabó, S.2
-
16
-
-
0031115862
-
Spectral sets and factorizations of finite abelian groups
-
J. Lagarias, Y. Wang, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), 73-98.
-
(1997)
J. Funct. Anal.
, vol.145
, pp. 73-98
-
-
Lagarias, J.1
Wang, Y.2
-
17
-
-
0002355528
-
Orthonormal bases of exponentials for the n-cube
-
_, Orthonormal bases of exponentials for the n-cube, Duke Math. J. 103 (2000), 25-37.
-
(2000)
Duke Math. J.
, vol.103
, pp. 25-37
-
-
-
18
-
-
0035538497
-
Universal spectra, universal tiling sets, and the spectral set conjecture
-
S. Pedersen, Y. Wang, Universal spectra, universal tiling sets, and the spectral set conjecture, Math. Scand. 88 (2001), 246-256.
-
(2001)
Math. Scand.
, vol.88
, pp. 246-256
-
-
Pedersen, S.1
Wang, Y.2
-
19
-
-
0037099095
-
Wavelets, tiling and spectral sets
-
Y. Wang, Wavelets, tiling and spectral sets, Duke Math J. 114 (2002), 43-57.
-
(2002)
Duke Math J.
, vol.114
, pp. 43-57
-
-
Wang, Y.1
|