-
1
-
-
84859690263
-
-
Berne, B. J., Ciccoti, G., Coker, D. F., Eds. World Scientific: Singapore
-
Berne, B. J., Ciccoti, G., Coker, D. F., Eds. Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics "Computer simulation of rare events and dynamics of classical and quantum condensed-phase systems, World Scientific: Singapore, 1998.
-
(1998)
Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics "Computer Simulation of Rare Events and Dynamics of Classical and Quantum Condensed-phase Systems
-
-
-
3
-
-
13044304431
-
-
Tully, J. C. J. Chem. Phys. 1990, 93 (2), 1061-1071.
-
(1990)
J. Chem. Phys.
, vol.93
, Issue.2
, pp. 1061-1071
-
-
Tully, J.C.1
-
4
-
-
12044251103
-
-
Neria, E.; Nitzan, A.; Barnett, R. N.; Landman, U. Phys. Rev. 1991, 67 (8), 1011-1014.
-
(1991)
Phys. Rev.
, vol.67
, Issue.8
, pp. 1011-1014
-
-
Neria, E.1
Nitzan, A.2
Barnett, R.N.3
Landman, U.4
-
5
-
-
36448999802
-
-
Webster, F.; Wang, E. T.; Rossky, P. J.; Friesner, R. A. J. Chem. Phys. 1994, 100 (7), 4835-4847.
-
(1994)
J. Chem. Phys.
, vol.100
, Issue.7
, pp. 4835-4847
-
-
Webster, F.1
Wang, E.T.2
Rossky, P.J.3
Friesner, R.A.4
-
11
-
-
1942535102
-
-
Zhu, C. Y.; Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2004, 120, 5543.
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 5543
-
-
Zhu, C.Y.1
Jasper, A.W.2
Truhlar, D.G.3
-
12
-
-
8444240480
-
-
Zhu, C. Y.; Nangia, S.; Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2004, 121, 7658.
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 7658
-
-
Zhu, C.Y.1
Nangia, S.2
Jasper, A.W.3
Truhlar, D.G.4
-
13
-
-
29244452328
-
-
Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. J. Chem. Phys. 2005, 123, 234106.
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 234106
-
-
Bedard-Hearn, M.J.1
Larsen, R.E.2
Schwartz, B.J.3
-
15
-
-
0010930905
-
-
Martinez, T. J.; Ben-Nun, M.; Levine, R. D. J. Phys. Chem. 1996, 100, 7884.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 7884
-
-
Martinez, T.J.1
Ben-Nun, M.2
Levine, R.D.3
-
18
-
-
0001537736
-
-
Nielsen, S.; Kapral, R.; Ciccotti, G. J. Chem. Phys. 2000, 112, 6543.
-
(2000)
J. Chem. Phys.
, vol.112
, pp. 6543
-
-
Nielsen, S.1
Kapral, R.2
Ciccotti, G.3
-
23
-
-
0034817515
-
-
Santer, M.; Manthe, U.; Stock, G. J. Chem. Phys. 2001, 114, 2001.
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 2001
-
-
Santer, M.1
Manthe, U.2
Stock, G.3
-
33
-
-
0030126484
-
-
Schwartz, B. J.; Bittner, E. R.; Prezhdo, O. V.; Rossky, P. J. J. Chem. Phys. 1996, 104, 5942.
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 5942
-
-
Schwartz, B.J.1
Bittner, E.R.2
Prezhdo, O.V.3
Rossky, P.J.4
-
34
-
-
0009162588
-
-
Bittner, E. R.; Schwartz, B. J.; Rossky, P. J. J. Mol. Struct. (THEOCHEM) 1997, 389, 203.
-
(1997)
J. Mol. Struct. (THEOCHEM)
, vol.389
, pp. 203
-
-
Bittner, E.R.1
Schwartz, B.J.2
Rossky, P.J.3
-
35
-
-
0026103656
-
-
Webster, F.; Rossky, P. J.; Friesner, R. A. Comput. Phys. Commun. 1991, 63 (1-3), 494-522.
-
(1991)
Comput. Phys. Commun.
, vol.63
, Issue.1-3
, pp. 494-522
-
-
Webster, F.1
Rossky, P.J.2
Friesner, R.A.3
-
36
-
-
84906357772
-
-
For the evolution in terms of a general basis set, see ref 13
-
For the evolution in terms of a general basis set, see ref 13.
-
-
-
-
42
-
-
12044260119
-
-
Zurek, W. H. Phys. Today 1991, 44 (10), 36.
-
(1991)
Phys. Today
, vol.44
, Issue.10
, pp. 36
-
-
Zurek, W.H.1
-
44
-
-
84906372260
-
-
note
-
To our knowledge, the EDSH algorithm presented here has never before been used. As noted in the text, for us, EDSH represents only the minimal-decoherence limit of the MFSH algorithm (ref 6).
-
-
-
-
46
-
-
24144456278
-
-
An alternate method for computing characteristic decoherence times has been suggested by Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2005, 123, 064103.
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 064103
-
-
Jasper, A.W.1
Truhlar, D.G.2
-
48
-
-
84906357773
-
-
note
-
i〉 for each adiabatic state i.
-
-
-
-
55
-
-
33845555949
-
-
Kevan, L. Acc. Chem. Res. 1981, 14 (5), 138-145.
-
(1981)
Acc. Chem. Res.
, vol.14
, Issue.5
, pp. 138-145
-
-
Kevan, L.1
-
56
-
-
3843142910
-
-
Schnitker, J.; Motakabbir, K.; Rossky, P. J.; Friesner, R. Phys. Rev. 1988, 60 (5), 456-459.
-
(1988)
Phys. Rev.
, vol.60
, Issue.5
, pp. 456-459
-
-
Schnitker, J.1
Motakabbir, K.2
Rossky, P.J.3
Friesner, R.4
-
61
-
-
84906357770
-
-
note
-
11(t) to be zero in the averaging.
-
-
-
-
62
-
-
84906386398
-
-
note
-
Wong and Rossky (WR) have reported significant lifetime differences for the excited hydrated electron as the damping of off-diagonal density matrix elements in MFSH is changed (ref 9), but we believe that this result is an artifact of an incorrect statistical procedure. To compute the mean lifetime with different damping parameters, WR used a small number of trajectories for each value of the damping parameter but resampled transition probabilities for each trajectory using hundreds of different random number seeds. Unfortunately, this resampling procedure cannot produce correct average lifetimes because, for the hydrated electron, the ground-to-first-excited-state energy gap opens rapidly after the transition to the ground state; the resampling therefore severely underestimates the probability of surface hops for times later than the surface hop for the original run. Thus, average lifetimes computed with this resampling procedure will be artificially long.
-
-
-
-
63
-
-
84906372258
-
-
note
-
For example, in simulations of the excited-state relaxation of electrons solvated in liquid tetrahydrofuran (ref 69), the electron often populates the ground state entirely by continuously mixing more and more ground-state character into the mean-field wave function, with no discontinuous collapse to the ground state ever taking place.
-
-
-
-
64
-
-
84906386399
-
-
note
-
The nonequilibrium solvent response function, S(t), predicted with SPSH in ref 29 has a smaller inertial decay than is seen in any of the curves in Figure 4. At the early "bounce", the SPSH S(t) is only ∼0.6 rather than ∼0.4 as seen in Figure 4. This difference may be caused by dynamics with SPSH that is distinct from that predicted with any of the other MQC algorithms discussed in this paper, but we cannot say this for certain. The difference also may be a result of poor sampling of initial conditions.
-
-
-
-
65
-
-
84906386400
-
-
Larsen, R. E.; Schwartz, B. J. Unpublished results
-
Larsen, R. E.; Schwartz, B. J. Unpublished results.
-
-
-
-
68
-
-
24144492340
-
-
Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. J. Chem. Phys. 2005, 122, 134506.
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 134506
-
-
Bedard-Hearn, M.J.1
Larsen, R.E.2
Schwartz, B.J.3
-
69
-
-
33750354958
-
-
Ph.D. Thesis, University of California, Los Angeles, CA
-
Bedard, M. J. Understanding classical and quantum solvation dynamics in the weakly polar solvent tetrahydrofuran (THF) using projections of molecular motions in molecular dynamics simulations, Ph.D. Thesis, University of California, Los Angeles, CA, 2006.
-
(2006)
Understanding Classical and Quantum Solvation Dynamics in the Weakly Polar Solvent Tetrahydrofuran (THF) Using Projections of Molecular Motions in Molecular Dynamics Simulations
-
-
Bedard, M.J.1
|