메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 493-500

Constructing informative prior distributions from domain knowledge in text classification

Author keywords

Knowledge based; MAP estimation; Maximum entropy

Indexed keywords

ENTROPY; INFORMATION RETRIEVAL; KNOWLEDGE BASED SYSTEMS; LINGUISTICS; REGRESSION ANALYSIS; TEXT PROCESSING; KNOWLEDGE ACQUISITION; MATHEMATICAL MODELS; PARAMETER ESTIMATION;

EID: 33750288406     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1148170.1148255     Document Type: Conference Paper
Times cited : (45)

References (34)
  • 2
    • 85086058033 scopus 로고    scopus 로고
    • The effect of adding relevance information in a relevance feedback environment
    • C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information in a relevance feedback environment. In SIGIR '94.
    • SIGIR '94
    • Buckley, C.1    Salton, G.2    Allan, J.3
  • 4
    • 0036989530 scopus 로고    scopus 로고
    • Bayesian online classifiers for text classification and filtering
    • K. Chai, H. Chieu, and H. Ng. Bayesian online classifiers for text classification and filtering. In SIGIR '02, pages 97-104, 2002.
    • (2002) SIGIR '02 , pp. 97-104
    • Chai, K.1    Chieu, H.2    Ng, H.3
  • 5
    • 84890506043 scopus 로고    scopus 로고
    • Adaptation of maximum entropy capitalizer: Little data can help a lot
    • C. Chelba and A. Acero. Adaptation of maximum entropy capitalizer: Little data can help a lot. In EMNLP '04, 2004.
    • (2004) EMNLP '04
    • Chelba, C.1    Acero, A.2
  • 6
    • 0031349295 scopus 로고    scopus 로고
    • Transferring and retraining learned information filters
    • W. Cohen and D. Kudenko. Transferring and retraining learned information filters. In AAAI/IAAI '97, pages 583-590, 1997.
    • (1997) AAAI/IAAI '97 , pp. 583-590
    • Cohen, W.1    Kudenko, D.2
  • 8
    • 84945147358 scopus 로고
    • Combining model-oriented and description-oriented approaches for probabilistic indexing
    • N. Fuhr and U. Pfeifer. Combining model-oriented and description-oriented approaches for probabilistic indexing. In SIGIR '91. pages 45-56, 1991.
    • (1991) SIGIR '91 , pp. 45-56
    • Fuhr, N.1    Pfeifer, U.2
  • 9
    • 84880747531 scopus 로고    scopus 로고
    • Feature generation for text categorization using world knowledge
    • E. Gabrilovich and S. Markovitch. Feature generation for text categorization using world knowledge. In IJCAI '05, pages 1048-1053, 2005.
    • (2005) IJCAI '05 , pp. 1048-1053
    • Gabrilovich, E.1    Markovitch, S.2
  • 10
    • 33750346710 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • To appear
    • A. Genkin, D. Lewis, and D. Madigan. Large-scale Bayesian logistic regression for text categorization. Technometrics, 2006. To appear.
    • (2006) Technometrics
    • Genkin, A.1    Lewis, D.2    Madigan, D.3
  • 12
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In ECML '98, pages 137-142, 1998.
    • (1998) ECML '98 , pp. 137-142
    • Joachims, T.1
  • 15
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • April
    • D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 5:361-397, April 2004.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 16
    • 1942516915 scopus 로고    scopus 로고
    • A loss function analysis for classification methods in text categorization
    • F. Li and Y. Yang. A loss function analysis for classification methods in text categorization. In ICML '03, pages 472-479, 2003.
    • (2003) ICML '03 , pp. 472-479
    • Li, F.1    Yang, Y.2
  • 17
    • 33750292852 scopus 로고    scopus 로고
    • Text classification by labeling words
    • B. Liu, X. Li, W. Lee, and P. Yu. Text classification by labeling words. In AAAI '04, 2004.
    • (2004) AAAI '04
    • Liu, B.1    Li, X.2    Lee, W.3    Yu, P.4
  • 18
    • 84950179515 scopus 로고
    • Eliciting prior information to enhance the predictive performance of bayesian graphical models
    • D. Madigan, J. Gavrin, and A. Raftery. Eliciting prior information to enhance the predictive performance of bayesian graphical models. Communications in Statistics - Theory and Methods, pages 2271-2292, 1995.
    • (1995) Communications in Statistics - Theory and Methods , pp. 2271-2292
    • Madigan, D.1    Gavrin, J.2    Raftery, A.3
  • 19
    • 33750349009 scopus 로고    scopus 로고
    • SpamBayes: Effective open-source, Bayesian based, email classification system
    • T. Meyer and B. Whateley. SpamBayes: Effective open-source, Bayesian based, email classification system. In CEAS '04, 2004.
    • (2004) CEAS '04
    • Meyer, T.1    Whateley, B.2
  • 21
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • July
    • M. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, July 1980.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.1
  • 22
    • 84880745728 scopus 로고    scopus 로고
    • Interactive feature selection
    • H. Raghavan, O. Madani, and R. Jones. Interactive feature selection. In IJCAI '05, pages 841-846, 2005.
    • (2005) IJCAI '05 , pp. 841-846
    • Raghavan, H.1    Madani, O.2    Jones, R.3
  • 24
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. IPM, 24(5):513-523, 1988.
    • (1988) IPM , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 27
    • 0029206376 scopus 로고
    • A comparison of classifiers and document representations for the routing problem
    • H. Schutze, D. Hull, and J. Pedersen. A comparison of classifiers and document representations for the routing problem. In SIGIR '95, pages 229-237, 1995.
    • (1995) SIGIR '95 , pp. 229-237
    • Schutze, H.1    Hull, D.2    Pedersen, J.3
  • 28
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 29
    • 0012950799 scopus 로고    scopus 로고
    • Bayesian and frequentist approaches to parametric predictive inference (with discussion)
    • Oxford Univ. Press
    • R. Smith. Bayesian and frequentist approaches to parametric predictive inference (with discussion). In Bayesian Statistics 6. Oxford Univ. Press, 1999.
    • (1999) Bayesian Statistics , vol.6
    • Smith, R.1
  • 30
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Statistical Soc. B., 58:267-288, 1996.
    • (1996) J. Royal Statistical Soc. B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 12244303260 scopus 로고    scopus 로고
    • Incorporating prior knowledge with weighted margin support vector machines
    • X. Wu and R. Srihari. Incorporating prior knowledge with weighted margin support vector machines. In KDD '04, pages 326-333, 2004.
    • (2004) KDD '04 , pp. 326-333
    • Wu, X.1    Srihari, R.2
  • 33
    • 1542347782 scopus 로고    scopus 로고
    • Robustness of regularized linear classification methods in text categorization
    • J. Zhang and Y. Yang. Robustness of regularized linear classification methods in text categorization. In SIGIR'03, pages 190-197, 2003.
    • (2003) SIGIR'03 , pp. 190-197
    • Zhang, J.1    Yang, Y.2
  • 34
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • T. Zhang and F. Oles. Text categorization based on regularized linear classification methods. Information Retrieval, 4:5-31, 2001.
    • (2001) Information Retrieval , vol.4 , pp. 5-31
    • Zhang, T.1    Oles, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.