-
1
-
-
0001332868
-
Uniform positivity improving property, Sobolev inequalities, and spectral gaps
-
MR1641566
-
AIDA, S. (1998). Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158 152-185. MR1641566
-
(1998)
J. Funct. Anal.
, vol.158
, pp. 152-185
-
-
Aida, S.1
-
2
-
-
0000920852
-
Logarithmic Sobolev inequalities and spectral gaps: Perturbation theory
-
MR1305076
-
AIDA, S. and SHIGEKAWA, I. (1994). Logarithmic Sobolev inequalities and spectral gaps: Perturbation theory. J. Funct. Anal. 126 448-475. MR1305076
-
(1994)
J. Funct. Anal.
, vol.126
, pp. 448-475
-
-
Aida, S.1
Shigekawa, I.2
-
4
-
-
21544471674
-
On general boundary value problem for parabolic equations
-
MRO197997
-
ARIMA, R. ( 1964). On general boundary value problem for parabolic equations. J. Math. Kyoto Univ. 4 207-243. MRO197997
-
(1964)
J. Math. Kyoto Univ.
, vol.4
, pp. 207-243
-
-
Arima, R.1
-
5
-
-
0002647982
-
Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients
-
MR1717811
-
CERRAI, S. (1999). Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients. Stochastics Stochastics Rep. 67 17-51. MR1717811
-
(1999)
Stochastics Stochastics Rep.
, vol.67
, pp. 17-51
-
-
Cerrai, S.1
-
8
-
-
0036882780
-
Symmetric Ornstein-Uhlenbeck semigroups and their generators
-
MR1942319
-
CHOJNOWSKA-MICHALIK, A. and GOLDYS, B. (2002). Symmetric Ornstein-Uhlenbeck semigroups and their generators. Probab. Theory Related Fields 124 459-486. MR1942319
-
(2002)
Probab. Theory Related Fields
, vol.124
, pp. 459-486
-
-
Chojnowska-Michalik, A.1
Goldys, B.2
-
11
-
-
0036022584
-
Some properties of invariant measures of non symmetric dissipative stochastic systems
-
MR1918538
-
DA PRATO, G., DEBUSSCHE, A. and GOLDYS, B. (2002). Some properties of invariant measures of non symmetric dissipative stochastic systems. Probab. Theory Related Fields 123 355-380. MR1918538
-
(2002)
Probab. Theory Related Fields
, vol.123
, pp. 355-380
-
-
Da Prato, G.1
Debussche, A.2
Goldys, B.3
-
12
-
-
38249012385
-
Nonexplosion, boundedness, and ergodicity for stochastic semilinear equations
-
MR1168978
-
DA PRATO, G. and ZABCZYK, J. (1992). Nonexplosion, boundedness, and ergodicity for stochastic semilinear equations. J. Differential Equations 98 181-195. MR1168978
-
(1992)
J. Differential Equations
, vol.98
, pp. 181-195
-
-
Da Prato, G.1
Zabczyk, J.2
-
13
-
-
0002062213
-
1-properties of intrinsic Schrödinger operators
-
MR0819177
-
1-properties of intrinsic Schrödinger operators. J. Fund. Anal. 65 126-146. MR0819177
-
(1986)
J. Fund. Anal.
, vol.65
, pp. 126-146
-
-
Davies, E.B.1
Simon, B.2
-
14
-
-
23044530992
-
Uniform exponential ergodicity of stochastic dissipative systems
-
MR1864040
-
GOLDYS, B. and MASLOWSKI, B. (2001). Uniform exponential ergodicity of stochastic dissipative systems. Czechoslovak Math. J. 51 745-762. MR1864040
-
(2001)
Czechoslovak Math. J.
, vol.51
, pp. 745-762
-
-
Goldys, B.1
Maslowski, B.2
-
16
-
-
77953126734
-
Exponential ergodicity for stochastic reaction-diffusion equations
-
Chapman Hall/CRC Press, Boca Raton, FL. MR2227225
-
GOLDYS, B. and MASLOWSKI, B. (2004). Exponential ergodicity for stochastic reaction-diffusion equations. In Stochastic Partial Differential Equations and Applications VII. Lecture Notes Pure Appl. Math. 245 115-131. Chapman Hall/CRC Press, Boca Raton, FL. MR2227225
-
(2004)
Stochastic Partial Differential Equations and Applications VII. Lecture Notes Pure Appl. Math.
, vol.245
, pp. 115-131
-
-
Goldys, B.1
Maslowski, B.2
-
17
-
-
23344452942
-
Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations
-
MR2158741
-
GOLDYS, B. and MASLOWSKI, B. (2006). Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations. J. Funct. Anal. 226 230-255. MR2158741
-
(2006)
J. Funct. Anal.
, vol.226
, pp. 230-255
-
-
Goldys, B.1
Maslowski, B.2
-
18
-
-
0035484639
-
Poincaré inequality for weighted first order Sobolev spaces on loop spaces
-
MR1856276
-
GONG, F., RÖCKNER, M. and Wu, L. (2001). Poincaré inequality for weighted first order Sobolev spaces on loop spaces. J. Funct. Anal. 185 527-563. MR1856276
-
(2001)
J. Funct. Anal.
, vol.185
, pp. 527-563
-
-
Gong, F.1
Röckner, M.2
Wu, L.3
-
19
-
-
0036026967
-
Exponential mixing properties of stochastic PDEs through asymptotic coupling
-
MR1939651
-
HAIRER, M. (2002). Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields 124 345-380. MR1939651
-
(2002)
Probab. Theory Related Fields
, vol.124
, pp. 345-380
-
-
Hairer, M.1
-
20
-
-
0013532163
-
Exponential mixing for a PDE driven by a degenerate noise
-
MR1888852
-
HAIRER, M. (2002). Exponential mixing for a PDE driven by a degenerate noise. Nonlinearity 15271-279. MR1888852
-
(2002)
Nonlinearity
, vol.15
, pp. 271-279
-
-
Hairer, M.1
-
22
-
-
0006806919
-
p
-
MR1789439
-
p. Osaka J. Math. 37 603-624. MR1789439
-
(2000)
Osaka J. Math.
, vol.37
, pp. 603-624
-
-
Hino, M.1
-
24
-
-
0011684148
-
Ergodicite d'une classe d'equations aux derivees partielles stochastiques
-
MR1320362
-
JACQUOT, S. and ROYER, G. (1995). Ergodicite d'une classe d'equations aux derivees partielles stochastiques. C. R. Acad. Sci. Paris Ser. 1 Math. 320 231-236. MR1320362
-
(1995)
C. R. Acad. Sci. Paris Ser. 1 Math.
, vol.320
, pp. 231-236
-
-
Jacquot, S.1
Royer, G.2
-
25
-
-
17444395616
-
Semilinear Kolmogorov equations and applications to stochastic optimal control
-
MR2117233
-
MASIERO, F. (2005). Semilinear Kolmogorov equations and applications to stochastic optimal control. Appl Math. Optim. 51 201-250. MR2117233
-
(2005)
Appl Math. Optim.
, vol.51
, pp. 201-250
-
-
Masiero, F.1
-
26
-
-
0039893528
-
Strong Feller property for semilinear stochastic evolution equations and applications
-
Springer, Berlin. MR1180781
-
MASLOWSKI, B. (1989). Strong Feller property for semilinear stochastic evolution equations and applications. In Stochastic Systems and Optimization. Lecture Notes in Control Inform. Sci. 136 210-224. Springer, Berlin. MR1180781
-
(1989)
Stochastic Systems and Optimization. Lecture Notes in Control Inform. Sci.
, vol.136
, pp. 210-224
-
-
Maslowski, B.1
-
27
-
-
0034557956
-
Probabilistic approach to the strong Feller property
-
MR1790081
-
MASLOWSKI, B. and SEIDLER, J. (2000). Probabilistic approach to the strong Feller property. Probab. Theory Related Fields 118 187-210. MR1790081
-
(2000)
Probab. Theory Related Fields
, vol.118
, pp. 187-210
-
-
Maslowski, B.1
Seidler, J.2
-
28
-
-
0042005669
-
Asymptotic properties of stochastic semilinear equations by the method of lower measures
-
MR1425551
-
MASLOWSKI, B. and SIMÃO, I. (1997). Asymptotic properties of stochastic semilinear equations by the method of lower measures. Colloq. Math. 72 147-171. MR1425551
-
(1997)
Colloq. Math.
, vol.72
, pp. 147-171
-
-
Maslowski, B.1
Simão, I.2
-
29
-
-
0042909255
-
Long time behaviour of non-autonomous SPDE's
-
MR1854029
-
MASLOWSKI, B. and SIMÃO, I. (2001). Long time behaviour of non-autonomous SPDE's. Stochastic Process. Appl. 95 285-309. MR1854029
-
(2001)
Stochastic Process. Appl.
, vol.95
, pp. 285-309
-
-
Maslowski, B.1
Simão, I.2
-
30
-
-
0036789329
-
Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise
-
MR1931266
-
MATTINGLY, J. C., STUART, A. M. and HIGHAM, D. J. (2002). Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101 185-232. MR1931266
-
(2002)
Stochastic Process. Appl.
, vol.101
, pp. 185-232
-
-
Mattingly, J.C.1
Stuart, A.M.2
Higham, D.J.3
-
31
-
-
0036026973
-
Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics
-
MR1937652
-
MATTINGLY, J. C. (2002). Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230 421-462. MR1937652
-
(2002)
Comm. Math. Phys.
, vol.230
, pp. 421-462
-
-
Mattingly, J.C.1
-
33
-
-
0000566364
-
Computable bounds for geometric convergence rates of Markov chains
-
MR1304770
-
MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4981-1011. MR1304770
-
(1994)
Ann. Appl. Probab.
, vol.4
, pp. 981-1011
-
-
Meyn, S.P.1
Tweedie, R.L.2
-
35
-
-
0003176179
-
Nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces
-
MR1624573
-
VAN NEERVEN, J. M. A. M. (1998). Nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces. J. Funct. Anal. 155 495-535. MR1624573
-
(1998)
J. Funct. Anal.
, vol.155
, pp. 495-535
-
-
Van Neerven, J.M.A.M.1
-
36
-
-
0002074149
-
Geometric ergodicity and hybrid Markov chains
-
MR1448322
-
ROBERTS, G. and ROSENTHAL, J. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab. 2 13-25. MR1448322
-
(1997)
Electron. Comm. Probab.
, vol.2
, pp. 13-25
-
-
Roberts, G.1
Rosenthal, J.2
-
37
-
-
0001028724
-
Ergodic behaviour of stochastic parabolic equations
-
MR1452421
-
SEIDLER, J. (1997). Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math. J. 47 277-316. MR1452421
-
(1997)
Czechoslovak Math. J.
, vol.47
, pp. 277-316
-
-
Seidler, J.1
-
38
-
-
0023867931
-
How violent are fast controls
-
MR0923278
-
SEIDMAN, T. I. (1988). How violent are fast controls. Math. Control Signals Systems 1 89-95. MR0923278
-
(1988)
Math. Control Signals Systems
, vol.1
, pp. 89-95
-
-
Seidman, T.I.1
-
39
-
-
0033474506
-
Geometric ergodicity for stochastic PDEs
-
MR1714903
-
SHARDLOW, T. (1999). Geometric ergodicity for stochastic PDEs. Stochastic Anal. Appl. 17 857-869. MR1714903
-
(1999)
Stochastic Anal. Appl.
, vol.17
, pp. 857-869
-
-
Shardlow, T.1
-
40
-
-
0001431377
-
Remarks on ergodic conditions for Markov process on Polish spaces
-
MR1810695
-
STETTNER, L. (1994). Remarks on ergodic conditions for Markov process on Polish spaces. Bull. Polish Acad. Sci. Math. 42 103-114. MR1810695
-
(1994)
Bull. Polish Acad. Sci. Math.
, vol.42
, pp. 103-114
-
-
Stettner, L.1
-
41
-
-
4344604413
-
Pinned Ornstein-Uhlenbeck processes on an infinite-dimensional space
-
World Sci. Publishing, River Edge, NJ. MR 1453146
-
SIMÃO, I. (1996). Pinned Ornstein-Uhlenbeck processes on an infinite-dimensional space. In Stochastic Analysis and Applications (Powys, 1995) 401-407. World Sci. Publishing, River Edge, NJ. MR 1453146
-
(1996)
Stochastic Analysis and Applications (Powys, 1995)
, pp. 401-407
-
-
Simão, I.1
-
42
-
-
0000612837
-
Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations
-
MR1165518
-
SOWERS, R. (1992). Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations. Probab. Theory Related Fields 92 393-421. MR1165518
-
(1992)
Probab. Theory Related Fields
, vol.92
, pp. 393-421
-
-
Sowers, R.1
-
43
-
-
0842346774
-
Essential spectral radius for Markov semigroups. I. Discrete time case
-
MR2031227
-
Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. Probab. Theory Related Fields 128 255-321. MR2031227
-
(2004)
Probab. Theory Related Fields
, vol.128
, pp. 255-321
-
-
Wu, L.1
|