-
1
-
-
0001332868
-
Uniform positivity improving property, Sobolev inequality and spectral gaps
-
S. Aida: Uniform positivity improving property, Sobolev inequality and spectral gaps, J. Funct. Anal. 158 (1998), 152-185.
-
(1998)
J. Funct. Anal.
, vol.158
, pp. 152-185
-
-
Aida, S.1
-
2
-
-
0002414164
-
Differential calculus on path and loop spaces I. Logarithmic Sobolev inequalities on path spaces
-
Série I
-
S. Aida and D. Elworthy: Differential calculus on path and loop spaces I. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris 321 Série I (1995), 97-102.
-
(1995)
C. R. Acad. Sci. Paris
, vol.321
, pp. 97-102
-
-
Aida, S.1
Elworthy, D.2
-
3
-
-
0030600930
-
Regularity of invariant measures: The case of non-constant diffusion part
-
V.I. Bogachev, N. Krylov and M. Röckner: Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138(1996), 223-242.
-
(1996)
J. Funct. Anal.
, vol.138
, pp. 223-242
-
-
Bogachev, V.I.1
Krylov, N.2
Röckner, M.3
-
4
-
-
53249085341
-
Regularity of invariant measures on finite and infinite dimensional spaces and applications
-
V.I. Bogachev and M. Röckner: Regularity of invariant measures on finite and infinite dimensional spaces and applications, J. Funct. Anal. 133(1995), 168-223.
-
(1995)
J. Funct. Anal.
, vol.133
, pp. 168-223
-
-
Bogachev, V.I.1
Röckner, M.2
-
5
-
-
0343081595
-
Existence and uniqueness of invariant measures: An approach via sectorial forms
-
V. Bogachev, M. Röckner, and T.S. Zhang: Existence and uniqueness of invariant measures: an approach via sectorial forms, Appl. Math. Optim. 41(2000), 87-109.
-
(2000)
Appl. Math. Optim.
, vol.41
, pp. 87-109
-
-
Bogachev, V.1
Röckner, M.2
Zhang, T.S.3
-
8
-
-
0000145028
-
Inégalité du type de sur léspace des chemins riemanniens
-
Série I
-
S. Fang: Inégalité du type de sur léspace des chemins riemanniens, C.R. Acad. Sci. Paris 318 Série I (1994), 257-260.
-
(1994)
C.R. Acad. Sci. Paris
, vol.318
, pp. 257-260
-
-
Fang, S.1
-
9
-
-
0002000391
-
Existence and uniqueness of physical ground states
-
L. Gross: Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972), 52-109.
-
(1972)
J. Funct. Anal.
, vol.10
, pp. 52-109
-
-
Gross, L.1
-
10
-
-
0011375822
-
Existence of invariant measures for diffusion processes on a Wiener space
-
M. Hino: Existence of invariant measures for diffusion processes on a Wiener space, Osaka J. Math. 35(1998), 717-734.
-
(1998)
Osaka J. Math.
, vol.35
, pp. 717-734
-
-
Hino, M.1
-
11
-
-
0010999220
-
Logarithmic Sobolev inequalities on path spaces
-
Série I
-
E.P. Hsu: Logarithmic Sobolev inequalities on path spaces, C.R. Acad. Sci. Paris 320 Série I (1995), 1009-1012.
-
(1995)
C.R. Acad. Sci. Paris
, vol.320
, pp. 1009-1012
-
-
Hsu, E.P.1
-
12
-
-
0031487270
-
Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds
-
E.P. Hsu: Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys. 189 (1997), 9-16.
-
(1997)
Comm. Math. Phys.
, vol.189
, pp. 9-16
-
-
Hsu, E.P.1
-
13
-
-
0002445127
-
Analysis on Wiener spaces II: Differential forms
-
S. Kusuoka: Analysis on Wiener spaces II: Differential forms, J. Funct. Anal. 103 (1992), 229-274.
-
(1992)
J. Funct. Anal.
, vol.103
, pp. 229-274
-
-
Kusuoka, S.1
-
17
-
-
0002893831
-
Quand l'inegalite log-Sobolev implique l'inegalite de trou spectral
-
Séminaire de Prob. XXXII, Springer-Verlag, Berlin-Heidelberg-New York
-
P. Mathieu: Quand l'inegalite log-Sobolev implique l'inegalite de trou spectral, Séminaire de Prob. XXXII, 30-35, Lecture Notes in Math. vol. 1686, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
-
(1998)
Lecture Notes in Math.
, vol.1686
, pp. 30-35
-
-
Mathieu, P.1
-
18
-
-
0003207468
-
One-parameter semigroups of positive operators
-
Springer-Verlag, Berlin-Heidelberg-New York
-
R. Nagel (ed.): One-parameter Semigroups of Positive Operators, Lecture Notes in Math. vol. 1184, Springer-Verlag, Berlin-Heidelberg-New York, 1986.
-
(1986)
Lecture Notes in Math.
, vol.1184
-
-
Nagel, R.1
-
19
-
-
84972550555
-
Existence of invariant measures of diffusions on an abstract Wiener space
-
I. Shigekawa: Existence of invariant measures of diffusions on an abstract Wiener space, Osaka J. Math. 24 (1987), 37-59.
-
(1987)
Osaka J. Math.
, vol.24
, pp. 37-59
-
-
Shigekawa, I.1
-
20
-
-
0011003048
-
The existence of invariant measures for C[0, 1]-valued diffusions
-
R.v. Vintschger: The existence of invariant measures for C[0, 1]-valued diffusions, Probab. Th. Rel. Fields 82(1989), 307-313.
-
(1989)
Probab. Th. Rel. Fields
, vol.82
, pp. 307-313
-
-
Vintschger, R.V.1
-
21
-
-
0040313653
-
Existence of invariant measures for diffusion processes with infinite dimensional state space
-
R. Høegh-Krohn Memorial, Cambridge Univ. Press, Cambridge, UK
-
T.S. Zhang: Existence of invariant measures for diffusion processes with infinite dimensional state space, Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, R. Høegh-Krohn Memorial, Vol. I, 283-294, Cambridge Univ. Press, Cambridge, UK, 1992.
-
(1992)
Ideas and Methods in Mathematical Analysis, Stochastics, and Applications
, vol.1
, pp. 283-294
-
-
Zhang, T.S.1
|