메뉴 건너뛰기




Volumn 16, Issue 5, 2006, Pages 1945-1958

Modeling species-habitat relationships with spatially autocorrelated observation data

Author keywords

Autologistic; Greater glider; Habitat modeling; Logistic regression; Petauroides australis; Petauroides volans; Spatial autocorrelation; Virtual glider; WinBUGS; Yellow bellied glider

Indexed keywords

ALLEE EFFECT; AUTOCORRELATION; BAYESIAN ANALYSIS; MARSUPIAL; REGRESSION ANALYSIS; SPATIAL DISTRIBUTION; WILDLIFE MANAGEMENT;

EID: 33749565507     PISSN: 10510761     EISSN: 10510761     Source Type: Journal    
DOI: 10.1890/1051-0761(2006)016[1945:MSRWSA]2.0.CO;2     Document Type: Article
Times cited : (100)

References (62)
  • 1
    • 0029089463 scopus 로고
    • A generalized estimating equations approach for spatially correlated binary data: With an application to the analysis of neuroimaging data
    • Albert, P. S., and L. M. McShane. 1995. A generalized estimating equations approach for spatially correlated binary data: with an application to the analysis of neuroimaging data. Biometrics 51:627-638.
    • (1995) Biometrics , vol.51 , pp. 627-638
    • Albert, P.S.1    McShane, L.M.2
  • 4
    • 0024922821 scopus 로고
    • Vegetation survey design for conservation: Gradsect sampling of forests in north-eastern NSW
    • Austin, M. P., and P. C. Heyligers. 1989. Vegetation survey design for conservation: gradsect sampling of forests in north-eastern NSW. Biological Conservation 50:13-32.
    • (1989) Biological Conservation , vol.50 , pp. 13-32
    • Austin, M.P.1    Heyligers, P.C.2
  • 6
    • 0001945196 scopus 로고
    • Nearest-neighbour systems and the autologistic model for binary data
    • Besag, J. E. 1972. Nearest-neighbour systems and the autologistic model for binary data. Journal of the Royal Statistical Society, B 34:75-83.
    • (1972) Journal of the Royal Statistical Society, B , vol.34 , pp. 75-83
    • Besag, J.E.1
  • 7
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society 2:192-236.
    • (1974) Journal of the Royal Statistical Society , vol.2 , pp. 192-236
    • Besag, J.1
  • 8
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Besag, J. 1975. Statistical analysis of non-lattice data. Statistician 24:179-195.
    • (1975) Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 9
    • 0036937201 scopus 로고    scopus 로고
    • Prediction of plant species distribution in lowland river valleys in Belgium: Modelling species response to site conditions
    • Bio, A. M. F., P. DeBecker, E. DeBie, W. Huybrechts, and M. Wassen. 2002. Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biological Conservation 11:2189-2216.
    • (2002) Biological Conservation , vol.11 , pp. 2189-2216
    • Bio, A.M.F.1    DeBecker, P.2    DeBie, E.3    Huybrechts, W.4    Wassen, M.5
  • 16
    • 2042433767 scopus 로고
    • Guidelines for using the Delphi technique to develop habitat suitability index curves
    • U.S. Fish and Wildlife Service, Department of the Interior, Washington, D.C., USA
    • Crance, J. H. 1987. Guidelines for using the Delphi technique to develop habitat suitability index curves. Biological Report 82 10134, U.S. Fish and Wildlife Service, Department of the Interior, Washington, D.C., USA.
    • (1987) Biological Report , vol.82 , pp. 10134
    • Crance, J.H.1
  • 18
    • 0025624041 scopus 로고
    • Model-free estimation from spatial samples: A reappraisal of classical sampling theory
    • De Gruijter, J. J., and C. J. J. TerBraak. 1990. Model-free estimation from spatial samples: a reappraisal of classical sampling theory. Mathematical Geology 22:407-415.
    • (1990) Mathematical Geology , vol.22 , pp. 407-415
    • De Gruijter, J.J.1    Terbraak, C.J.J.2
  • 19
    • 27944497124 scopus 로고    scopus 로고
    • ESRI. Environmental Systems Research Institute, Redlands, California, USA
    • ESRI. 1997. ArcInfo. Version 7.2. Environmental Systems Research Institute, Redlands, California, USA.
    • (1997) ArcInfo. Version 7.2
  • 20
    • 0036934092 scopus 로고    scopus 로고
    • Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. I. Species level modelling
    • Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. I. Species level modelling. Biodiversity and Conservation 11:2275-2307.
    • (2002) Biodiversity and Conservation , vol.11 , pp. 2275-2307
    • Ferrier, S.1    Watson, G.2    Pearce, J.3    Drielsma, M.4
  • 21
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
    • (1997) Environmental Conservation , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 22
    • 0035677960 scopus 로고    scopus 로고
    • Modeling and predicting species occurrence using broad-scale environmental variables: An example with butterflies of the Great Basin
    • Fleishman, E., R. Macnally, J. P. Fay, and D. D. Murphy. 2001. Modeling and predicting species occurrence using broad-scale environmental variables: an example with butterflies of the Great Basin. Conservation Biology 15:1674-1685.
    • (2001) Conservation Biology , vol.15 , pp. 1674-1685
    • Fleishman, E.1    Macnally, R.2    Fay, J.P.3    Murphy, D.D.4
  • 24
    • 0002795650 scopus 로고
    • Markov chain Monte Carlo maximum likelihood
    • E. M. Keramidas and S. M. Kaufman, editors. Interface Foundation of North America, Seattle, Washington, USA
    • Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood. Pages 156-163 in E. M. Keramidas and S. M. Kaufman, editors. Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface Foundation of North America, Seattle, Washington, USA.
    • (1991) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface , pp. 156-163
    • Geyer, C.J.1
  • 26
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks, W. R., A. Thomas, and D. J. Spiegelhalter. 1994. A language and program for complex Bayesian modelling. The Statistician 43:169-178.
    • (1994) The Statistician , vol.43 , pp. 169-178
    • Gilks, W.R.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 28
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A., and N. E. Zimmerman. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147-186.
    • (2000) Ecological Modelling , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmerman, N.E.2
  • 30
    • 0002627063 scopus 로고
    • Inferences from ecological incidence functions
    • Hanski, I. 1992. Inferences from ecological incidence functions. American Naturalist 139:657-662.
    • (1992) American Naturalist , vol.139 , pp. 657-662
    • Hanski, I.1
  • 32
    • 21844519917 scopus 로고
    • Fully Bayesian approach to image restoration with an application in biogeography
    • Heikkinen, J., and H. Hogmander. 1994. Fully Bayesian approach to image restoration with an application in biogeography. Applied Statistics 43:569-582.
    • (1994) Applied Statistics , vol.43 , pp. 569-582
    • Heikkinen, J.1    Hogmander, H.2
  • 33
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel, A. H., V. Helfer, and F. Metral. 2001. Assessing habitat-suitability models with a virtual species. Ecological Modelling 145:111-121.
    • (2001) Ecological Modelling , vol.145 , pp. 111-121
    • Hirzel, A.H.1    Helfer, V.2    Metral, F.3
  • 35
    • 0031799834 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo for autologistic regression models with application to the distribution of plant species
    • Huffer, F. W., and H. Wu. 1998. Markov Chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54:509-524.
    • (1998) Biometrics , vol.54 , pp. 509-524
    • Huffer, F.W.1    Wu, H.2
  • 38
    • 0034532755 scopus 로고    scopus 로고
    • Effects of variable-intensity logging and the influence of habitat variables on the distribution of the greater glider Petauroides volans in montane forest, southeastern New South Wales
    • Kavanagh, R. P. 2000. Effects of variable-intensity logging and the influence of habitat variables on the distribution of the greater glider Petauroides volans in montane forest, southeastern New South Wales. Pacific Conservation Biology 6:18-30.
    • (2000) Pacific Conservation Biology , vol.6 , pp. 18-30
    • Kavanagh, R.P.1
  • 39
    • 0025694284 scopus 로고
    • Food selection by the greater glider, Petaurus volans: Is foliar nitrogen a determinant of habitat quality?
    • Kavanagh, R. P., and M. J. Lambert. 1990. Food selection by the greater glider, Petaurus volans: is foliar nitrogen a determinant of habitat quality? Australian Wildlife Research 17:285-299.
    • (1990) Australian Wildlife Research , vol.17 , pp. 285-299
    • Kavanagh, R.P.1    Lambert, M.J.2
  • 40
    • 0242363495 scopus 로고    scopus 로고
    • Autologistic regression modeling of American woodcock habitat use with spatially dependent data
    • J. M. Scott, editor. Island Press, Washington, D.C., USA
    • Klute, D. S., M. J. Lovallo, and W. M. Tzilkowski. 2002. Autologistic regression modeling of American woodcock habitat use with spatially dependent data. Pages 335-343 in J. M. Scott, editor. Predicting species occurrences; issues of accuracy and scale. Island Press, Washington, D.C., USA.
    • (2002) Predicting Species Occurrences; Issues of Accuracy and Scale , pp. 335-343
    • Klute, D.S.1    Lovallo, M.J.2    Tzilkowski, W.M.3
  • 41
    • 0027881344 scopus 로고
    • Spatial autocorrelation: Trouble or new paradigm?
    • Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659-1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 42
    • 0024937968 scopus 로고
    • Spatial pattern and ecological analysis
    • Legendre, P., and M. J. Fortin. 1989. Spatial pattern and ecological analysis. Vegetatio 80:107-138.
    • (1989) Vegetatio , vol.80 , pp. 107-138
    • Legendre, P.1    Fortin, M.J.2
  • 43
    • 0025639250 scopus 로고
    • Habitat requirements of the mountain brushtail possum and the greater glider in the montane ash-type eucalypt forests of the Central Highlands of Victoria, Australia
    • Lindenmayer, D. B., R. B. Cunningham, M. T. Tanton, A. P. Smith, and H. A. Nix. 1990. Habitat requirements of the mountain brushtail possum and the greater glider in the montane ash-type eucalypt forests of the Central Highlands of Victoria, Australia. Australian Wildlife Research 17:467-478.
    • (1990) Australian Wildlife Research , vol.17 , pp. 467-478
    • Lindenmayer, D.B.1    Cunningham, R.B.2    Tanton, M.T.3    Smith, A.P.4    Nix, H.A.5
  • 44
    • 0032991236 scopus 로고    scopus 로고
    • Arboreal marsupial incidence in eucalypt patches in southeastern Australia: A test of Hanski's incidence function metapopulation model for patch occupancy
    • Lindenmayer, D. B., M. A. McCarthy, and M. L. Pope. 1999. Arboreal marsupial incidence in eucalypt patches in southeastern Australia: a test of Hanski's incidence function metapopulation model for patch occupancy. Oikos 84:99-109.
    • (1999) Oikos , vol.84 , pp. 99-109
    • Lindenmayer, D.B.1    McCarthy, M.A.2    Pope, M.L.3
  • 46
    • 0036527211 scopus 로고    scopus 로고
    • Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research
    • Link, W. A., E. Cam, J. D. Nichols, and E. G. Cooch. 2002. Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research. Journal of Wildlife Management 66:277-291.
    • (2002) Journal of Wildlife Management , vol.66 , pp. 277-291
    • Link, W.A.1    Cam, E.2    Nichols, J.D.3    Cooch, E.G.4
  • 49
    • 0034110745 scopus 로고    scopus 로고
    • Bayesian state-space modeling of age-structured data: Fitting a model is just the beginning
    • Millar, R. B., and R. Meyer. 2000. Bayesian state-space modeling of age-structured data: fitting a model is just the beginning. Canadian Journal of Fisheries and Aquatic Sciences 57:43-50.
    • (2000) Canadian Journal of Fisheries and Aquatic Sciences , vol.57 , pp. 43-50
    • Millar, R.B.1    Meyer, R.2
  • 50
    • 0025766123 scopus 로고
    • Validation techniques for logistic regression models
    • Miller, M. E., and S. L. Hui. 1991. Validation techniques for logistic regression models. Statistics in Medicine 10:1213-1226.
    • (1991) Statistics in Medicine , vol.10 , pp. 1213-1226
    • Miller, M.E.1    Hui, S.L.2
  • 51
    • 0013278806 scopus 로고    scopus 로고
    • Simple connectivity measures in spatial ecology
    • Moilanen, A., and M. Nieminen. 2002. Simple connectivity measures in spatial ecology. Ecology 83:1131-1145.
    • (2002) Ecology , vol.83 , pp. 1131-1145
    • Moilanen, A.1    Nieminen, M.2
  • 52
    • 0007845829 scopus 로고    scopus 로고
    • National Parks and Wildlife Service. New South Wales Regional Forest Agreement Steering Committee, Canberra, Australia
    • National Parks and Wildlife Service. 1998. Eden fauna modelling. New South Wales Regional Forest Agreement Steering Committee, Canberra, Australia.
    • (1998) Eden Fauna Modelling
  • 53
    • 0033831709 scopus 로고    scopus 로고
    • Evaluating the predictive performance of habitat models developed using logistic regression
    • Pearce, J., and S. Ferrier. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133:225-245.
    • (2000) Ecological Modelling , vol.133 , pp. 225-245
    • Pearce, J.1    Ferrier, S.2
  • 54
    • 0026399388 scopus 로고
    • GIS-based modelling using logistic multiple regression: A case study of the Mt. Graham red squirrel
    • Pereira, J. M. C., and R. M. Itami. 1991. GIS-based modelling using logistic multiple regression: a case study of the Mt. Graham red squirrel. Photogrammetric Engineering and Remote Sensing 57:1475-1486.
    • (1991) Photogrammetric Engineering and Remote Sensing , vol.57 , pp. 1475-1486
    • Pereira, J.M.C.1    Itami, R.M.2
  • 55
    • 22044457669 scopus 로고    scopus 로고
    • The applicability of habitat evaluation methodologies in ecological risk assessment
    • Rand, G. M., and J. R. Newman. 1998. The applicability of habitat evaluation methodologies in ecological risk assessment. Human and Ecological Risk Assessment 4:905-929.
    • (1998) Human and Ecological Risk Assessment , vol.4 , pp. 905-929
    • Rand, G.M.1    Newman, J.R.2
  • 57
    • 0034603060 scopus 로고    scopus 로고
    • Population dynamical consequences of climate change for a small temperate songbird
    • Sæther, B. E., J. Tufto, S. Engen, K. Jerstad, O. W. Rostad, and J. E. Skatan. 2000. Population dynamical consequences of climate change for a small temperate songbird. Science 287:854-856.
    • (2000) Science , vol.287 , pp. 854-856
    • Sæther, B.E.1    Tufto, J.2    Engen, S.3    Jerstad, K.4    Rostad, O.W.5    Skatan, J.E.6
  • 60
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 62
    • 0001880968 scopus 로고    scopus 로고
    • Modeling the distribution of plant species using the autologistic regression model
    • Wu, H., and F. W. Huffer. 1997. Modeling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistics 4:49-64.
    • (1997) Environmental and Ecological Statistics , vol.4 , pp. 49-64
    • Wu, H.1    Huffer, F.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.