-
1
-
-
0002221136
-
Fast algorithms for mining association rules
-
Agrawal, R. and Srikant, R. "Fast algorithms for mining association rules." VLDB-94, 1994.
-
(1994)
VLDB-94
-
-
Agrawal, R.1
Srikant, R.2
-
2
-
-
0002794540
-
Mining the most interesting rules
-
Bayardo, R. and Agrawal, R. "Mining the most interesting rules." KDD-99, 1999.
-
(1999)
KDD-99
-
-
Bayardo, R.1
Agrawal, R.2
-
4
-
-
33749557359
-
Interestingness of discovered association rules in terms of neighborhood-based unexpectedness
-
Dong G., Li J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD-98.
-
PAKDD-98
-
-
Dong, G.1
Li, J.2
-
5
-
-
0034593063
-
RuleViz: A model for visualizing knowledge discovery process
-
Han J, Cercone N. "RuleViz: A model for visualizing knowledge discovery process". KDD-00, 2000.
-
(2000)
KDD-00
-
-
Han, J.1
Cercone, N.2
-
6
-
-
0002502404
-
DMQL: A data mining query language for relational databases
-
Han J., Fu, Y., Wang W., Koperski, K. and Zaiane, O. "DMQL: a data mining query language for relational databases." SIGMOD Workshop on DMKD, 1996.
-
(1996)
SIGMOD Workshop on DMKD
-
-
Han, J.1
Fu, Y.2
Wang, W.3
Koperski, K.4
Zaiane, O.5
-
8
-
-
0002843620
-
Exception rule mining with a relative interestingness measure
-
Hussain, F, Liu, H, Suzuki, E., Lu, H. Exception rule mining with a relative interestingness measure. PAKDD-00, 2000.
-
(2000)
PAKDD-00
-
-
Hussain, F.1
Liu, H.2
Suzuki, E.3
Lu, H.4
-
9
-
-
33745782786
-
Evaluation of interestingness measures for ranking discovered knowledge
-
Hilderman, R., Hamilton, H. "Evaluation of interestingness measures for ranking discovered knowledge." PAKDD-2001.
-
PAKDD-2001
-
-
Hilderman, R.1
Hamilton, H.2
-
10
-
-
33749562310
-
Visualizing association rules with interactive mosaic plots
-
Hofmann H, Siebes A., Wilhelm, A. "Visualizing association rules with interactive mosaic plots". KDD-00.
-
KDD-00
-
-
Hofmann, H.1
Siebes, A.2
Wilhelm, A.3
-
11
-
-
12244313033
-
Interestingness of frequent itemsets using bayesian networks as background knowledge
-
Jaroszewicz, S., and Simovici, D. "Interestingness of frequent itemsets using bayesian networks as background knowledge." KDD-04, 2004.
-
(2004)
KDD-04
-
-
Jaroszewicz, S.1
Simovici, D.2
-
12
-
-
33745803468
-
Post-processing environment for browsing large sets of association rules
-
Jorge A., Pocas J., Azevedo P. "Post-processing environment for browsing large sets of association rules". PKDD-02 VDM Workshop, 2002.
-
(2002)
PKDD-02 VDM Workshop
-
-
Jorge, A.1
Pocas, J.2
Azevedo, P.3
-
13
-
-
0036264672
-
Information visualization and visual data mining
-
Keim D. "Information visualization and visual data mining". IEEE Trans. Vis. Comput. Graph, 2002.
-
(2002)
IEEE Trans. Vis. Comput. Graph
-
-
Keim, D.1
-
14
-
-
0003113325
-
Finding interesting rules from large sets of discovered association rules
-
Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.I. "Finding interesting rules from large sets of discovered association rules." CIKM-1994, 1994.
-
(1994)
CIKM-1994
-
-
Klemetinen, M.1
Mannila, H.2
Ronkainen, P.3
Toivonen, H.4
Verkamo, A.I.5
-
16
-
-
0003269280
-
Using general impressions to analyze discovered classification rules
-
Liu B., Hsu W. and Chen S., "Using general impressions to analyze discovered classification rules." KDD-97, 1997.
-
(1997)
KDD-97
-
-
Liu, B.1
Hsu, W.2
Chen, S.3
-
17
-
-
84948104699
-
Integrating classification and association rule mining
-
Liu B., Hsu W., and Ma Y. "Integrating classification and association rule mining." KDD-98, 1998.
-
(1998)
KDD-98
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
18
-
-
0012281281
-
Mining association rules with multiple minimum supports
-
Liu B., Hsu W., Ma Y. "Mining association rules with multiple minimum supports." KDD-99, 1999.
-
(1999)
KDD-99
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
19
-
-
0033333282
-
Finding interesting patterns using user expectations
-
Liu, B., Hsu, W., Mun, L., & Lee, H. "Finding interesting patterns using user expectations." IEEE TKDE, 11(6), 1999.
-
(1999)
IEEE TKDE
, vol.11
, Issue.6
-
-
Liu, B.1
Hsu, W.2
Mun, L.3
Lee, H.4
-
20
-
-
0013314763
-
Ordering categorical data to improve visualization
-
Ma S., Hellerstein J. "Ordering categorical data to improve visualization. " INFOVIS-99, 1999.
-
(1999)
INFOVIS-99
-
-
Ma, S.1
Hellerstein, J.2
-
21
-
-
0003024181
-
A new SQL-like operator for mining association rules
-
Meo, R. Psaila, G., and Ceri, S. "A new SQL-like operator for mining association rules." VLDB-96, 1996.
-
(1996)
VLDB-96
-
-
Meo, R.1
Psaila, G.2
Ceri, S.3
-
23
-
-
0036643196
-
A. knowledge refinement based on the discovery of unexpected patterns in data mining
-
July
-
Padmanabhan, B. and Tuzhilin, "A. knowledge refinement based on the discovery of unexpected patterns in data mining." Decision Support Systems, 33(3), July 2002.
-
(2002)
Decision Support Systems
, vol.33
, Issue.3
-
-
Padmanabhan, B.1
Tuzhilin2
-
26
-
-
0030380606
-
What makes patterns interesting in knowledge discovery systems
-
Silberschatz, A, Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE TKDE 8(6), 1996.
-
(1996)
IEEE TKDE
, vol.8
, Issue.6
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
27
-
-
84964943935
-
Autonomous discovery of reliable exception rules
-
Suzuki, E. "Autonomous discovery of reliable exception rules." KDD-97, 1997.
-
(1997)
KDD-97
-
-
Suzuki, E.1
-
29
-
-
0242456800
-
Handling very large numbers of association rules in the analysis of microarray data
-
Tuzhilin, A. and Adomavicius, G. "Handling very large numbers of association rules in the analysis of microarray data." KDD-02, 2002.
-
(2002)
KDD-02
-
-
Tuzhilin, A.1
Adomavicius, G.2
-
30
-
-
0242456825
-
Querying multiple sets of discovered rules
-
Tuzhilin, A., and Liu, B. "Querying multiple sets of discovered rules. KDD-02, 2002.
-
(2002)
KDD-02
-
-
Tuzhilin, A.1
Liu, B.2
-
34
-
-
12244280413
-
V-Mirier: Using enhanced parallel coordinates to mine product design and test data
-
Zhao K. Liu, B., Tirpak, T. and Schaller, A. "V-Mirier: using enhanced parallel coordinates to mine product design and test data". KDD-02, 2004.
-
(2004)
KDD-02
-
-
Zhao, K.1
Liu, B.2
Tirpak, T.3
Schaller, A.4
-
35
-
-
34548573335
-
A visual data mining framework for convenient identification of useful knowledge
-
Zhao K., Liu B., Tirpak T. and Xiao W. "A visual data mining framework for convenient identification of useful knowledge." ICDM-05. 2005.
-
(2005)
ICDM-05
-
-
Zhao, K.1
Liu, B.2
Tirpak, T.3
Xiao, W.4
|