메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 297-306

Rule interestingness analysis using OLAP operations

Author keywords

Class association rules; Diagnostic data mining; General impressions; Interestingness analysis; OLAP

Indexed keywords

ALGORITHMS; CELLULAR TELEPHONE SYSTEMS; COMPUTER SYSTEM RECOVERY; DATA MINING; DATA REDUCTION;

EID: 33749565421     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1150402.1150437     Document Type: Conference Paper
Times cited : (30)

References (35)
  • 1
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • Agrawal, R. and Srikant, R. "Fast algorithms for mining association rules." VLDB-94, 1994.
    • (1994) VLDB-94
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0002794540 scopus 로고    scopus 로고
    • Mining the most interesting rules
    • Bayardo, R. and Agrawal, R. "Mining the most interesting rules." KDD-99, 1999.
    • (1999) KDD-99
    • Bayardo, R.1    Agrawal, R.2
  • 4
    • 33749557359 scopus 로고    scopus 로고
    • Interestingness of discovered association rules in terms of neighborhood-based unexpectedness
    • Dong G., Li J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD-98.
    • PAKDD-98
    • Dong, G.1    Li, J.2
  • 5
    • 0034593063 scopus 로고    scopus 로고
    • RuleViz: A model for visualizing knowledge discovery process
    • Han J, Cercone N. "RuleViz: A model for visualizing knowledge discovery process". KDD-00, 2000.
    • (2000) KDD-00
    • Han, J.1    Cercone, N.2
  • 8
    • 0002843620 scopus 로고    scopus 로고
    • Exception rule mining with a relative interestingness measure
    • Hussain, F, Liu, H, Suzuki, E., Lu, H. Exception rule mining with a relative interestingness measure. PAKDD-00, 2000.
    • (2000) PAKDD-00
    • Hussain, F.1    Liu, H.2    Suzuki, E.3    Lu, H.4
  • 9
    • 33745782786 scopus 로고    scopus 로고
    • Evaluation of interestingness measures for ranking discovered knowledge
    • Hilderman, R., Hamilton, H. "Evaluation of interestingness measures for ranking discovered knowledge." PAKDD-2001.
    • PAKDD-2001
    • Hilderman, R.1    Hamilton, H.2
  • 10
    • 33749562310 scopus 로고    scopus 로고
    • Visualizing association rules with interactive mosaic plots
    • Hofmann H, Siebes A., Wilhelm, A. "Visualizing association rules with interactive mosaic plots". KDD-00.
    • KDD-00
    • Hofmann, H.1    Siebes, A.2    Wilhelm, A.3
  • 11
    • 12244313033 scopus 로고    scopus 로고
    • Interestingness of frequent itemsets using bayesian networks as background knowledge
    • Jaroszewicz, S., and Simovici, D. "Interestingness of frequent itemsets using bayesian networks as background knowledge." KDD-04, 2004.
    • (2004) KDD-04
    • Jaroszewicz, S.1    Simovici, D.2
  • 12
    • 33745803468 scopus 로고    scopus 로고
    • Post-processing environment for browsing large sets of association rules
    • Jorge A., Pocas J., Azevedo P. "Post-processing environment for browsing large sets of association rules". PKDD-02 VDM Workshop, 2002.
    • (2002) PKDD-02 VDM Workshop
    • Jorge, A.1    Pocas, J.2    Azevedo, P.3
  • 13
    • 0036264672 scopus 로고    scopus 로고
    • Information visualization and visual data mining
    • Keim D. "Information visualization and visual data mining". IEEE Trans. Vis. Comput. Graph, 2002.
    • (2002) IEEE Trans. Vis. Comput. Graph
    • Keim, D.1
  • 16
    • 0003269280 scopus 로고    scopus 로고
    • Using general impressions to analyze discovered classification rules
    • Liu B., Hsu W. and Chen S., "Using general impressions to analyze discovered classification rules." KDD-97, 1997.
    • (1997) KDD-97
    • Liu, B.1    Hsu, W.2    Chen, S.3
  • 17
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • Liu B., Hsu W., and Ma Y. "Integrating classification and association rule mining." KDD-98, 1998.
    • (1998) KDD-98
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 18
    • 0012281281 scopus 로고    scopus 로고
    • Mining association rules with multiple minimum supports
    • Liu B., Hsu W., Ma Y. "Mining association rules with multiple minimum supports." KDD-99, 1999.
    • (1999) KDD-99
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 19
    • 0033333282 scopus 로고    scopus 로고
    • Finding interesting patterns using user expectations
    • Liu, B., Hsu, W., Mun, L., & Lee, H. "Finding interesting patterns using user expectations." IEEE TKDE, 11(6), 1999.
    • (1999) IEEE TKDE , vol.11 , Issue.6
    • Liu, B.1    Hsu, W.2    Mun, L.3    Lee, H.4
  • 20
    • 0013314763 scopus 로고    scopus 로고
    • Ordering categorical data to improve visualization
    • Ma S., Hellerstein J. "Ordering categorical data to improve visualization. " INFOVIS-99, 1999.
    • (1999) INFOVIS-99
    • Ma, S.1    Hellerstein, J.2
  • 21
    • 0003024181 scopus 로고    scopus 로고
    • A new SQL-like operator for mining association rules
    • Meo, R. Psaila, G., and Ceri, S. "A new SQL-like operator for mining association rules." VLDB-96, 1996.
    • (1996) VLDB-96
    • Meo, R.1    Psaila, G.2    Ceri, S.3
  • 23
    • 0036643196 scopus 로고    scopus 로고
    • A. knowledge refinement based on the discovery of unexpected patterns in data mining
    • July
    • Padmanabhan, B. and Tuzhilin, "A. knowledge refinement based on the discovery of unexpected patterns in data mining." Decision Support Systems, 33(3), July 2002.
    • (2002) Decision Support Systems , vol.33 , Issue.3
    • Padmanabhan, B.1    Tuzhilin2
  • 26
    • 0030380606 scopus 로고    scopus 로고
    • What makes patterns interesting in knowledge discovery systems
    • Silberschatz, A, Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE TKDE 8(6), 1996.
    • (1996) IEEE TKDE , vol.8 , Issue.6
    • Silberschatz, A.1    Tuzhilin, A.2
  • 27
    • 84964943935 scopus 로고    scopus 로고
    • Autonomous discovery of reliable exception rules
    • Suzuki, E. "Autonomous discovery of reliable exception rules." KDD-97, 1997.
    • (1997) KDD-97
    • Suzuki, E.1
  • 29
    • 0242456800 scopus 로고    scopus 로고
    • Handling very large numbers of association rules in the analysis of microarray data
    • Tuzhilin, A. and Adomavicius, G. "Handling very large numbers of association rules in the analysis of microarray data." KDD-02, 2002.
    • (2002) KDD-02
    • Tuzhilin, A.1    Adomavicius, G.2
  • 30
    • 0242456825 scopus 로고    scopus 로고
    • Querying multiple sets of discovered rules
    • Tuzhilin, A., and Liu, B. "Querying multiple sets of discovered rules. KDD-02, 2002.
    • (2002) KDD-02
    • Tuzhilin, A.1    Liu, B.2
  • 31
  • 33
    • 33646753131 scopus 로고    scopus 로고
    • Mining unexpected rules by pushing user dynamics
    • Wang K., Jiang Y., Lakshmanan L: V.S. "Mining unexpected rules by pushing user dynamics." KDD-03, 2003.
    • (2003) KDD-03
    • Wang, K.1    Jiang, Y.2    Lakshmanan, L.V.S.3
  • 34
    • 12244280413 scopus 로고    scopus 로고
    • V-Mirier: Using enhanced parallel coordinates to mine product design and test data
    • Zhao K. Liu, B., Tirpak, T. and Schaller, A. "V-Mirier: using enhanced parallel coordinates to mine product design and test data". KDD-02, 2004.
    • (2004) KDD-02
    • Zhao, K.1    Liu, B.2    Tirpak, T.3    Schaller, A.4
  • 35
    • 34548573335 scopus 로고    scopus 로고
    • A visual data mining framework for convenient identification of useful knowledge
    • Zhao K., Liu B., Tirpak T. and Xiao W. "A visual data mining framework for convenient identification of useful knowledge." ICDM-05. 2005.
    • (2005) ICDM-05
    • Zhao, K.1    Liu, B.2    Tirpak, T.3    Xiao, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.