메뉴 건너뛰기




Volumn 38, Issue 3, 2006, Pages 693-728

Normal approximation for random sums

Author keywords

Berry Esseen bound; Local dependence; Point process; Random field; Stein's method; Two dimensional maximum

Indexed keywords

BERRY-ESSEEN BOUND; LOCAL DEPENDENCE; POINT PROCESS; RANDOM FIELD; STEIN'S METHOD; TWO-DIMENSIONAL MAXIMUM;

EID: 33749543903     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1239/aap/1158684998     Document Type: Article
Times cited : (29)

References (30)
  • 1
    • 84959600617 scopus 로고
    • Large-sample theory of sequential estimation
    • Anscombe, F. J. (1952). Large-sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48, 600-607.
    • (1952) Proc. Camb. Phil. Soc. , vol.48 , pp. 600-607
    • Anscombe, F.J.1
  • 2
    • 0000380180 scopus 로고
    • On central limit theorems in geometrical probability
    • Avram, F. and Bertsimas, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Prob. 3, 1033-1046.
    • (1993) Ann. Appl. Prob. , vol.3 , pp. 1033-1046
    • Avram, F.1    Bertsimas, D.2
  • 3
    • 0032222172 scopus 로고    scopus 로고
    • On the variance of the number of maxima in random vectors and its applications
    • Bai, Z.-D., Chao, C.-C., Hwang, H.-K. and Liang, W.-Q. (1998). On the variance of the number of maxima in random vectors and its applications. Ann. Appl. Prob. 8, 886-895.
    • (1998) Ann. Appl. Prob. , vol.8 , pp. 886-895
    • Bai, Z.-D.1    Chao, C.-C.2    Hwang, H.-K.3    Liang, W.-Q.4
  • 5
    • 0002998733 scopus 로고    scopus 로고
    • Limit theorems for the number of maxima in random samples from planar regions
    • Bai Z.-D., Hwang, H.-K., Liang, W.-Q. and Tsai, T.-H. (2001). Limit theorems for the number of maxima in random samples from planar regions. Electron. J. Prob. 6, 41 pp.
    • (2001) Electron. J. Prob. , vol.6 , pp. 41
    • Bai, Z.-D.1    Hwang, H.-K.2    Liang, W.-Q.3    Tsai, T.-H.4
  • 6
    • 0000193451 scopus 로고
    • On normal approximations of distributions in terms of dependency graphs
    • Baldi, P. and Rinott, Y. (1989). On normal approximations of distributions in terms of dependency graphs. Ann. Prob. 17, 1646-1650.
    • (1989) Ann. Prob. , vol.17 , pp. 1646-1650
    • Baldi, P.1    Rinott, Y.2
  • 7
    • 0035712391 scopus 로고    scopus 로고
    • The number of two-dimensional maxima
    • Barbour, A. D. and Xia, A. (2001). The number of two-dimensional maxima. Adv. Appl. Prob. 33, 727-750.
    • (2001) Adv. Appl. Prob. , vol.33 , pp. 727-750
    • Barbour, A.D.1    Xia, A.2
  • 8
    • 38249005717 scopus 로고
    • A central limit theorem for decomposable random variables with applications to random graphs
    • Barbour, A. D., Karoński, M. and Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combinatorial Theory B 47, 125-145.
    • (1989) J. Combinatorial Theory B , vol.47 , pp. 125-145
    • Barbour, A.D.1    Karoński, M.2    Ruciński, A.3
  • 9
    • 0034374793 scopus 로고    scopus 로고
    • Supporting-points processes and some of their applications
    • Baryshnkov, Yu. (2000). Supporting-points processes and some of their applications. Prob. Theory Relat. Fields 117, 163-182.
    • (2000) Prob. Theory Relat. Fields , vol.117 , pp. 163-182
    • Baryshnikov, Yu.1
  • 10
    • 0000817812 scopus 로고
    • An estimate of the remainder in the combinatorial central limit theorem
    • Bolthausen, E. (1984). An estimate of the remainder in the combinatorial central limit theorem. Z. Wahrscheinlichkeitsth. 66, 379-386.
    • (1984) Z. Wahrscheinlichkeitsth. , vol.66 , pp. 379-386
    • Bolthausen, E.1
  • 11
    • 4544375370 scopus 로고    scopus 로고
    • Normal approximation under local dependence
    • Chen, L. H. Y. and Shao, Q.-M. (2004). Normal approximation under local dependence. Ann. Prob. 32, 1985-2028.
    • (2004) Ann. Prob. , vol.32 , pp. 1985-2028
    • Chen, L.H.Y.1    Shao, Q.-M.2
  • 12
    • 4544241299 scopus 로고    scopus 로고
    • Stein's method, Palm theory and Poisson process approximation
    • Chen, L. H. Y. and Xia, A. (2004). Stein's method, Palm theory and Poisson process approximation. Ann. Prob. 32, 2545-2569.
    • (2004) Ann. Prob. , vol.32 , pp. 2545-2569
    • Chen, L.H.Y.1    Xia, A.2
  • 14
    • 0010750292 scopus 로고    scopus 로고
    • Some examples of normal approximations by Stein's method
    • In eds D. Aldous and R. Pemantle, Springer, Berlin
    • Dembo, A. and Rinott, Y. (1996). Some examples of normal approximations by Stein's method. In Random Discrete Structures (IMA Vol. Math. Appl. 76), eds D. Aldous and R. Pemantle, Springer, Berlin, pp. 25-44.
    • (1996) Random Discrete Structures (IMA Vol. Math. Appl.) , vol.76 , pp. 25-44
    • Dembo, A.1    Rinott, Y.2
  • 15
    • 0008411565 scopus 로고
    • Records, the maximal layer, and uniform distributions in monotone sets
    • Devroye, L. (1993). Records, the maximal layer, and uniform distributions in monotone sets. Comput. Math. Appl. 25, 19-31.
    • (1993) Comput. Math. Appl. , vol.25 , pp. 19-31
    • Devroye, L.1
  • 17
    • 0040783718 scopus 로고
    • 1 bounds for asymptotic normality of m-dependent sums using Stein's technique
    • l bounds for asymptotic normality of m-dependent sums using Stein's technique. Ann. Prob. 2, 522-529.
    • (1974) Ann. Prob. , vol.2 , pp. 522-529
    • Erickson, R.V.1
  • 19
    • 0030137191 scopus 로고    scopus 로고
    • The compound Poisson approximation for a portfolio of dependent risks
    • Goovaerts, M. J. and Dhaene, J. (1996). The compound Poisson approximation for a portfolio of dependent risks. Insurance Math. Econom. 18, 81-85.
    • (1996) Insurance Math. Econom. , vol.18 , pp. 81-85
    • Goovaerts, M.J.1    Dhaene, J.2
  • 20
    • 0004212801 scopus 로고
    • 3rd edn. Academic Press, London
    • Kallenberg, O. (1983). Random Measures, 3rd edn. Academic Press, London.
    • (1983) Random Measures
    • Kallenberg, O.1
  • 21
    • 33646436714 scopus 로고    scopus 로고
    • An inequality for the asymmetry of distributions and a Berry-Esseen theorem for random summation
    • Article 2
    • Kläver, H. and Schmitz, N. (2006). An inequality for the asymmetry of distributions and a Berry-Esseen theorem for random summation. J. Inequal. Pure Appl. Math. 7, Article 2, 25 pp.
    • (2006) J. Inequal. Pure Appl. Math. , vol.7 , pp. 25
    • Kläver, H.1    Schmitz, N.2
  • 23
    • 85136400913 scopus 로고    scopus 로고
    • Normal approximation in geometric probability
    • In eds A. D. Barbour and L. H. Y. Chen, Singapore University Press/World Scientific, Singapore
    • Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein's Method and Applications, eds A. D. Barbour and L. H. Y. Chen, Singapore University Press/World Scientific, Singapore, pp.37-58.
    • (2005) Stein's Method and Applications , pp. 37-58
    • Penrose, M.D.1    Yukich, J.E.2
  • 24
    • 0010776974 scopus 로고
    • On the central limit theorem for the sum of a random number of independent random variables
    • Rényi, A. (1960). On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Acad. Sci. Hungar. 11, 97-102.
    • (1960) Acta Math. Acad. Sci. Hungar. , vol.11 , pp. 97-102
    • Rényi, A.1
  • 25
    • 0030075451 scopus 로고    scopus 로고
    • -1/2 log n rate, and applications to multivariate graph related statistics
    • -1/2 log n rate, and applications to multivariate graph related statistics. J. Multivariate Anal, 56, 333-350.
    • (1996) J. Multivariate Anal. , vol.56 , pp. 333-350
    • Rinott, Y.1    Rotar, V.2
  • 28
    • 0000457248 scopus 로고
    • A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
    • In eds L. M. Le Cam, J. Neyman and E. L. Scott, University of California Press, Berkeley
    • Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 2, eds L. M. Le Cam, J. Neyman and E. L. Scott, University of California Press, Berkeley, pp. 583-602.
    • (1972) Proc. 6th Berkeley Symp. Math. Statist. Prob. , vol.2 , pp. 583-602
    • Stein, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.