-
1
-
-
84959600617
-
Large-sample theory of sequential estimation
-
Anscombe, F. J. (1952). Large-sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48, 600-607.
-
(1952)
Proc. Camb. Phil. Soc.
, vol.48
, pp. 600-607
-
-
Anscombe, F.J.1
-
2
-
-
0000380180
-
On central limit theorems in geometrical probability
-
Avram, F. and Bertsimas, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Prob. 3, 1033-1046.
-
(1993)
Ann. Appl. Prob.
, vol.3
, pp. 1033-1046
-
-
Avram, F.1
Bertsimas, D.2
-
3
-
-
0032222172
-
On the variance of the number of maxima in random vectors and its applications
-
Bai, Z.-D., Chao, C.-C., Hwang, H.-K. and Liang, W.-Q. (1998). On the variance of the number of maxima in random vectors and its applications. Ann. Appl. Prob. 8, 886-895.
-
(1998)
Ann. Appl. Prob.
, vol.8
, pp. 886-895
-
-
Bai, Z.-D.1
Chao, C.-C.2
Hwang, H.-K.3
Liang, W.-Q.4
-
4
-
-
27844562630
-
Maxima in hypercubes
-
Bai, Z.-D., Devroye, L., Hwang, H.-K. and Tsai, T.-H. (2005). Maxima in hypercubes. Random Structures Algorithms 27, 290-309.
-
(2005)
Random Structures Algorithms
, vol.27
, pp. 290-309
-
-
Bai, Z.-D.1
Devroye, L.2
Hwang, H.-K.3
Tsai, T.-H.4
-
5
-
-
0002998733
-
Limit theorems for the number of maxima in random samples from planar regions
-
Bai Z.-D., Hwang, H.-K., Liang, W.-Q. and Tsai, T.-H. (2001). Limit theorems for the number of maxima in random samples from planar regions. Electron. J. Prob. 6, 41 pp.
-
(2001)
Electron. J. Prob.
, vol.6
, pp. 41
-
-
Bai, Z.-D.1
Hwang, H.-K.2
Liang, W.-Q.3
Tsai, T.-H.4
-
6
-
-
0000193451
-
On normal approximations of distributions in terms of dependency graphs
-
Baldi, P. and Rinott, Y. (1989). On normal approximations of distributions in terms of dependency graphs. Ann. Prob. 17, 1646-1650.
-
(1989)
Ann. Prob.
, vol.17
, pp. 1646-1650
-
-
Baldi, P.1
Rinott, Y.2
-
7
-
-
0035712391
-
The number of two-dimensional maxima
-
Barbour, A. D. and Xia, A. (2001). The number of two-dimensional maxima. Adv. Appl. Prob. 33, 727-750.
-
(2001)
Adv. Appl. Prob.
, vol.33
, pp. 727-750
-
-
Barbour, A.D.1
Xia, A.2
-
8
-
-
38249005717
-
A central limit theorem for decomposable random variables with applications to random graphs
-
Barbour, A. D., Karoński, M. and Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combinatorial Theory B 47, 125-145.
-
(1989)
J. Combinatorial Theory B
, vol.47
, pp. 125-145
-
-
Barbour, A.D.1
Karoński, M.2
Ruciński, A.3
-
9
-
-
0034374793
-
Supporting-points processes and some of their applications
-
Baryshnkov, Yu. (2000). Supporting-points processes and some of their applications. Prob. Theory Relat. Fields 117, 163-182.
-
(2000)
Prob. Theory Relat. Fields
, vol.117
, pp. 163-182
-
-
Baryshnikov, Yu.1
-
10
-
-
0000817812
-
An estimate of the remainder in the combinatorial central limit theorem
-
Bolthausen, E. (1984). An estimate of the remainder in the combinatorial central limit theorem. Z. Wahrscheinlichkeitsth. 66, 379-386.
-
(1984)
Z. Wahrscheinlichkeitsth.
, vol.66
, pp. 379-386
-
-
Bolthausen, E.1
-
11
-
-
4544375370
-
Normal approximation under local dependence
-
Chen, L. H. Y. and Shao, Q.-M. (2004). Normal approximation under local dependence. Ann. Prob. 32, 1985-2028.
-
(2004)
Ann. Prob.
, vol.32
, pp. 1985-2028
-
-
Chen, L.H.Y.1
Shao, Q.-M.2
-
12
-
-
4544241299
-
Stein's method, Palm theory and Poisson process approximation
-
Chen, L. H. Y. and Xia, A. (2004). Stein's method, Palm theory and Poisson process approximation. Ann. Prob. 32, 2545-2569.
-
(2004)
Ann. Prob.
, vol.32
, pp. 2545-2569
-
-
Chen, L.H.Y.1
Xia, A.2
-
14
-
-
0010750292
-
Some examples of normal approximations by Stein's method
-
In eds D. Aldous and R. Pemantle, Springer, Berlin
-
Dembo, A. and Rinott, Y. (1996). Some examples of normal approximations by Stein's method. In Random Discrete Structures (IMA Vol. Math. Appl. 76), eds D. Aldous and R. Pemantle, Springer, Berlin, pp. 25-44.
-
(1996)
Random Discrete Structures (IMA Vol. Math. Appl.)
, vol.76
, pp. 25-44
-
-
Dembo, A.1
Rinott, Y.2
-
15
-
-
0008411565
-
Records, the maximal layer, and uniform distributions in monotone sets
-
Devroye, L. (1993). Records, the maximal layer, and uniform distributions in monotone sets. Comput. Math. Appl. 25, 19-31.
-
(1993)
Comput. Math. Appl.
, vol.25
, pp. 19-31
-
-
Devroye, L.1
-
17
-
-
0040783718
-
1 bounds for asymptotic normality of m-dependent sums using Stein's technique
-
l bounds for asymptotic normality of m-dependent sums using Stein's technique. Ann. Prob. 2, 522-529.
-
(1974)
Ann. Prob.
, vol.2
, pp. 522-529
-
-
Erickson, R.V.1
-
19
-
-
0030137191
-
The compound Poisson approximation for a portfolio of dependent risks
-
Goovaerts, M. J. and Dhaene, J. (1996). The compound Poisson approximation for a portfolio of dependent risks. Insurance Math. Econom. 18, 81-85.
-
(1996)
Insurance Math. Econom.
, vol.18
, pp. 81-85
-
-
Goovaerts, M.J.1
Dhaene, J.2
-
20
-
-
0004212801
-
-
3rd edn. Academic Press, London
-
Kallenberg, O. (1983). Random Measures, 3rd edn. Academic Press, London.
-
(1983)
Random Measures
-
-
Kallenberg, O.1
-
21
-
-
33646436714
-
An inequality for the asymmetry of distributions and a Berry-Esseen theorem for random summation
-
Article 2
-
Kläver, H. and Schmitz, N. (2006). An inequality for the asymmetry of distributions and a Berry-Esseen theorem for random summation. J. Inequal. Pure Appl. Math. 7, Article 2, 25 pp.
-
(2006)
J. Inequal. Pure Appl. Math.
, vol.7
, pp. 25
-
-
Kläver, H.1
Schmitz, N.2
-
23
-
-
85136400913
-
Normal approximation in geometric probability
-
In eds A. D. Barbour and L. H. Y. Chen, Singapore University Press/World Scientific, Singapore
-
Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein's Method and Applications, eds A. D. Barbour and L. H. Y. Chen, Singapore University Press/World Scientific, Singapore, pp.37-58.
-
(2005)
Stein's Method and Applications
, pp. 37-58
-
-
Penrose, M.D.1
Yukich, J.E.2
-
24
-
-
0010776974
-
On the central limit theorem for the sum of a random number of independent random variables
-
Rényi, A. (1960). On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Acad. Sci. Hungar. 11, 97-102.
-
(1960)
Acta Math. Acad. Sci. Hungar.
, vol.11
, pp. 97-102
-
-
Rényi, A.1
-
25
-
-
0030075451
-
-1/2 log n rate, and applications to multivariate graph related statistics
-
-1/2 log n rate, and applications to multivariate graph related statistics. J. Multivariate Anal, 56, 333-350.
-
(1996)
J. Multivariate Anal.
, vol.56
, pp. 333-350
-
-
Rinott, Y.1
Rotar, V.2
-
26
-
-
84981719010
-
-
John Wiley, Chichester
-
Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999). Stochastic Processes for Insurance and Finance. John Wiley, Chichester.
-
(1999)
Stochastic Processes for Insurance and Finance
-
-
Rolski, T.1
Schmidli, H.2
Schmidt, V.3
Teugels, J.4
-
28
-
-
0000457248
-
A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
-
In eds L. M. Le Cam, J. Neyman and E. L. Scott, University of California Press, Berkeley
-
Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 2, eds L. M. Le Cam, J. Neyman and E. L. Scott, University of California Press, Berkeley, pp. 583-602.
-
(1972)
Proc. 6th Berkeley Symp. Math. Statist. Prob.
, vol.2
, pp. 583-602
-
-
Stein, C.1
|