메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages

Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIAL GENE EXPRESSIONS; DIFFERENTIALLY EXPRESSED GENE; EXPRESSION LEVELS; FALSE POSITIVE; FINITE MIXTURES; IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES; LINEAR MODELING; TREATMENT EFFECTS;

EID: 33749326335     PISSN: 14712105     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-7-391     Document Type: Article
Times cited : (8)

References (26)
  • 1
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit S, Yang YH, Callow MJ, Speed TP: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 2002, 12(1):111-139.
    • (2002) Stat Sin , vol.12 , Issue.1 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3    Speed, T.P.4
  • 3
    • 0037335024 scopus 로고    scopus 로고
    • Experimental design of DNA microarray experiments
    • Simon RM, Dobbin K: Experimental design of DNA microarray experiments. Biotechniques 2003, Suppl:16-21.
    • (2003) Biotechniques , Issue.SUPPL. , pp. 16-21
    • Simon, R.M.1    Dobbin, K.2
  • 4
    • 84874666821 scopus 로고    scopus 로고
    • Affymetrix: Statistical Algorithms Description Document
    • Affymetrix: Statistical Algorithms Description Document. [http://www.affymetrix.com/support/technical/byproduct.affx?product=mas].
  • 6
    • 33645823677 scopus 로고    scopus 로고
    • A new summarization method for Affymetrix probe level data
    • Hochreiter S, Clevert DA, Obermayer K: A new summarization method for Affymetrix probe level data. Bioinformatics 2006, 22(8):943-949.
    • (2006) Bioinformatics , vol.22 , Issue.8 , pp. 943-949
    • Hochreiter, S.1    Clevert, D.A.2    Obermayer, K.3
  • 7
    • 22144461265 scopus 로고    scopus 로고
    • Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset
    • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS: Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol 2005, 6(2):R16.
    • (2005) Genome Biol , vol.6 , Issue.2
    • Choe, S.E.1    Boutros, M.2    Michelson, A.M.3    Church, G.M.4    Halfon, M.S.5
  • 8
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD: A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001, 17(6):509-519.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 9
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 10
    • 1542784653 scopus 로고    scopus 로고
    • Empirical Bayes analysis of a microarray experiment
    • Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 2001, 96(456):1151-1160.
    • (2001) J Am Stat Assoc , vol.96 , Issue.456 , pp. 1151-1160
    • Efron, B.1    Tibshirani, R.2    Storey, J.D.3    Tusher, V.4
  • 11
    • 27544493681 scopus 로고    scopus 로고
    • Data-adaptive test statistics for microarray data
    • Mukherjee S, Roberts SJ, van der Laan MJ: Data-adaptive test statistics for microarray data. Bioinformatics 2005, 21 Suppl 2:ii108-ii114.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Mukherjee, S.1    Roberts, S.J.2    van der Laan, M.J.3
  • 12
    • 2942604440 scopus 로고    scopus 로고
    • Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays
    • Barrera L, Benner C, Tao YC, Winzeler E, Zhou Y: Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays. BMC Bio-informatics 2004, 5:42.
    • (2004) BMC Bio-informatics , vol.5 , pp. 42
    • Barrera, L.1    Benner, C.2    Tao, Y.C.3    Winzeler, E.4    Zhou, Y.5
  • 13
    • 31744434873 scopus 로고    scopus 로고
    • Clustering expressed genes on the basis of their association with a quantitative phenotype
    • Jia Z, Xu S: Clustering expressed genes on the basis of their association with a quantitative phenotype. Genet Res 2005, 86(3):193-207.
    • (2005) Genet Res , vol.86 , Issue.3 , pp. 193-207
    • Jia, Z.1    Xu, S.2
  • 14
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 16
    • 84947318637 scopus 로고    scopus 로고
    • Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
    • Cleveland WS, Devlin SJ: Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association 1998, 83(403):596-609.
    • (1998) Journal of the American Statistical Association , vol.83 , Issue.403 , pp. 596-609
    • Cleveland, W.S.1    Devlin, S.J.2
  • 20
    • 28944441103 scopus 로고    scopus 로고
    • Effect of pooling samples on the efficiency of comparative studies using microarrays
    • Zhang SID, Gant TW: Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 2005, 21(24):4378-4383.
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4378-4383
    • Zhang, S.I.D.1    Gant, T.W.2
  • 21
    • 0004066260 scopus 로고    scopus 로고
    • Finite mixture models
    • New York; Toronto, Wiley; xxii
    • McLachlan GJ, Peel D: Finite mixture models. New York; Toronto, Wiley; 2000:xxii, 419.
    • (2000) , pp. 419
    • McLachlan, G.J.1    Peel, D.2
  • 22
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • Kerr MK, Martin M, Churchill GA: Analysis of variance for gene expression microarray data. J Comput Biol 2000, 7(6):819-837.
    • (2000) J Comput Biol , vol.7 , Issue.6 , pp. 819-837
    • Kerr, M.K.1    Martin, M.2    Churchill, G.A.3
  • 23
    • 4544341015 scopus 로고    scopus 로고
    • Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments
    • Article 3
    • Smyth GK: Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 2004, 3(1):Article 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1
    • Smyth, G.K.1
  • 24
    • 0003487601 scopus 로고
    • Neural networks for pattern recognition
    • Oxford Oxford University Press; xvii
    • Bishop CM: Neural networks for pattern recognition. Oxford Oxford University Press; 1995:xvii, 482.
    • (1995) , pp. 482
    • Bishop, C.M.1
  • 26
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: Software for model-based cluster analysis
    • Fraley C, Raftery AE: MCLUST: Software for model-based cluster analysis. J Classif 1999, 16(2):297-306.
    • (1999) J Classif , vol.16 , Issue.2 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.