메뉴 건너뛰기




Volumn 26, Issue , 2006, Pages 153-190

Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; MARKOV PROCESSES; OPTIMIZATION; RANDOM PROCESSES;

EID: 33749029684     PISSN: 10769757     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.1933     Document Type: Article
Times cited : (69)

References (38)
  • 2
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society Series B, 36, 192-236.
    • (1974) Journal of the Royal Statistical Society Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 3
    • 33748993023 scopus 로고    scopus 로고
    • Statistical physics, convex optimization and the sum product algorithm
    • Stanford University
    • Chiang, M., & Forney, G. (2001). Statistical physics, convex optimization and the sum product algorithm. Tech. rep., Stanford University.
    • (2001) Tech. Rep.
    • Chiang, M.1    Forney, G.2
  • 5
    • 21444439046 scopus 로고    scopus 로고
    • Iterative join-graph propagation
    • Darwiche, A., & Friedman, N. (Eds.)
    • Dechter, R., Kask, K., & Mateescu, R. (2002). Iterative join-graph propagation. In Darwiche, A., & Friedman, N. (Eds.), Proceedings UAI-2002, pp. 128-136.
    • (2002) Proceedings UAI-2002 , pp. 128-136
    • Dechter, R.1    Kask, K.2    Mateescu, R.3
  • 8
    • 85012812907 scopus 로고
    • A tractable inference algorithm for diagnosing multiple diseases
    • Kanal, L., Henrion, M., Shachter, R., & Lemmer, J. (Eds.), Amsterdam. Elsevier
    • Heckerman, D. (1989). A tractable inference algorithm for diagnosing multiple diseases. In Kanal, L., Henrion, M., Shachter, R., & Lemmer, J. (Eds.), Proceedings of the Fifth Workshop on Uncertainty in Artificial Intelligence, pp. 163-171, Amsterdam. Elsevier.
    • (1989) Proceedings of the Fifth Workshop on Uncertainty in Artificial Intelligence , pp. 163-171
    • Heckerman, D.1
  • 9
    • 84898959007 scopus 로고    scopus 로고
    • Stable fixed points of loopy belief propagation are minima of the Bethe free energy
    • Becker, S., Thrun, S., & Obermayer, K. (Eds.), Cambridge. MIT Press
    • Heskes, T. (2003). Stable fixed points of loopy belief propagation are minima of the Bethe free energy. In Becker, S., Thrun, S., & Obermayer, K. (Eds.), Advances in Neural Information Processing Systems 15, pp. 359-366, Cambridge. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 359-366
    • Heskes, T.1
  • 10
    • 6344281239 scopus 로고    scopus 로고
    • On the uniqueness of loopy belief propagation fixed points
    • Heskes, T. (2004). On the uniqueness of loopy belief propagation fixed points. Neural Computation, 16, 2379-2413.
    • (2004) Neural Computation , vol.16 , pp. 2379-2413
    • Heskes, T.1
  • 12
    • 84899007304 scopus 로고    scopus 로고
    • Approximate expectation maximization
    • Thrun, S., Saul, L., & Schölkopf, B. (Eds.), Cambridge. MIT Press
    • Heskes, T., Zoeter, O., & Wiegerinck, W. (2004). Approximate Expectation Maximization. In Thrun, S., Saul, L., & Schölkopf, B. (Eds.), Advances in Neural Information Processing Systems 16, pp. 353-360, Cambridge. MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 353-360
    • Heskes, T.1    Zoeter, O.2    Wiegerinck, W.3
  • 13
    • 21844467514 scopus 로고    scopus 로고
    • Loopy belief propagation: Convergence and effects of message errors
    • Ihler, A., Fisher, J., & Willsky, A. (2005). Loopy belief propagation: Convergence and effects of message errors. Journal of Machine Learning Research, 6, 905-936.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 905-936
    • Ihler, A.1    Fisher, J.2    Willsky, A.3
  • 15
    • 0003641246 scopus 로고
    • On the effective implementation of the iterative proportional fitting procedure
    • Jiroušek, R., & Přeučil, S. (1995). On the effective implementation of the iterative proportional fitting procedure. Computational Statistics and Data Analysis, 19, 177-189.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 177-189
    • Jiroušek, R.1    Přeučil, S.2
  • 16
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. (Ed.). Kluwer Academic Publishers, Dordrecht
    • Jordan, M., Ghahramani, Z., Jaakkola, T., fe Saul, L. (1998). An introduction to variational methods for graphical models. In Jordan, M. (Ed.), Learning in Graphical Models, pp. 183-233. Kluwer Academic Publishers, Dordrecht.
    • (1998) Learning in Graphical Models , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 17
    • 36149021742 scopus 로고
    • The theory of cooperative phenomena
    • Kikuchi, R. (1951). The theory of cooperative phenomena. Physical Review, 81, 988-1003.
    • (1951) Physical Review , vol.81 , pp. 988-1003
    • Kikuchi, R.1
  • 19
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, Oxford
    • Lauritzen, S. (1996). Graphical models. Oxford University Press, Oxford.
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 21
    • 0032001728 scopus 로고    scopus 로고
    • Turbo decoding as as an instance of Pearl's 'belief propagation' algorithm
    • McEliece, R., MacKay, D., & Cheng, J. (1998). Turbo decoding as as an instance of Pearl's 'belief propagation' algorithm. IEEE Journal on Selected Areas in Communication, 16(2), 140-152.
    • (1998) IEEE Journal on Selected Areas in Communication , vol.16 , Issue.2 , pp. 140-152
    • McEliece, R.1    MacKay, D.2    Cheng, J.3
  • 23
    • 0003229133 scopus 로고    scopus 로고
    • The bayes net toolbox for matlab
    • Murphy, K. (2001). The Bayes Net toolbox for Matlab. Computing Science and Statistics, 33, 331-350.
    • (2001) Computing Science and Statistics , vol.33 , pp. 331-350
    • Murphy, K.1
  • 24
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • Laskey, K., & Prade, H. (Eds.), San Francisco, CA. Morgan Kaufmann Publishers
    • Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for approximate inference: An empirical study. In Laskey, K., & Prade, H. (Eds.), Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence, pp. 467-475, San Francisco, CA. Morgan Kaufmann Publishers.
    • (1999) Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence , pp. 467-475
    • Murphy, K.1    Weiss, Y.2    Jordan, M.3
  • 25
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • In Jordan, M. (Ed.). Kluwer Academic Publishers, Dordrecht
    • Neal, R., & Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In Jordan, M. (Ed.), Learning in Graphical Models, pp. 355-368. Kluwer Academic Publishers, Dordrecht.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 27
    • 20744460346 scopus 로고    scopus 로고
    • Estimation and marginalization using Kikuchi approximation methods
    • Pakzad, P., & Anantharam, V. (2005). Estimation and marginalization using Kikuchi approximation methods. Neural Computation, 17, 1836-1873.
    • (2005) Neural Computation , vol.17 , pp. 1836-1873
    • Pakzad, P.1    Anantharam, V.2
  • 29
    • 23844535141 scopus 로고    scopus 로고
    • Cluster variation method in statistical physics and graphical models
    • Pelizzola, A. (2005). Cluster variation method in statistical physics and graphical models. Journal of Physics A, 38, R309-R339.
    • (2005) Journal of Physics A , vol.38
    • Pelizzola, A.1
  • 30
    • 84898928980 scopus 로고    scopus 로고
    • Minimax and Hamiltonian dynamics of excitatory-inhibitory networks
    • Jordan, M., Kearns, M., & Solla, S. (Eds.). MIT Press
    • Seung, S., Richardson, T., Lagarias, J., &: Hopfield, J. (1998). Minimax and Hamiltonian dynamics of excitatory-inhibitory networks. In Jordan, M., Kearns, M., & Solla, S. (Eds.), Advances in Neural Information Processing Systems 10, pp. 329-335. MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 329-335
    • Seung, S.1    Richardson, T.2    Lagarias, J.3    Hopfield, J.4
  • 32
    • 84898944621 scopus 로고    scopus 로고
    • The unified propagation and scaling algorithm
    • Dietterich, T., Becker, S., & Ghahramani, Z. (Eds.), Cambridge. MIT Press
    • Teh, Y., &: Welling, M. (2002). The unified propagation and scaling algorithm. In Dietterich, T., Becker, S., & Ghahramani, Z. (Eds.), Advances in Neural Information Processing Systems 14, pp. 953-960, Cambridge. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 953-960
    • Teh, Y.1    Welling, M.2
  • 34
    • 2942655074 scopus 로고    scopus 로고
    • Tree-based reparameterization for approximate estimation on loopy graphs
    • Dietterich, T., Becker, S., & Ghahramani, Z. (Eds.), Cambridge. MIT Press
    • Wainwright, M., Jaakkola, T., & Willsky, A. (2002b). Tree-based reparameterization for approximate estimation on loopy graphs. In Dietterich, T., Becker, S., & Ghahramani, Z. (Eds.), Advances in Neural Information Processing Systems 14, pp. 1001-1008, Cambridge. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 1001-1008
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 35
    • 29344473978 scopus 로고    scopus 로고
    • Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudo-moment matching
    • Bishop, C., & Frey, B. (Eds.). Society for Artificial Intelligence and Statistics
    • Wainwright, M., Jaakkola, T., & Willsky, A. (2003). Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudo-moment matching. In Bishop, C., & Frey, B. (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics.
    • (2003) Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 36
    • 84898975095 scopus 로고    scopus 로고
    • Generalized belief propagation
    • Leen, T., Dietterich, T., & Tresp, V. (Eds.), Cambridge. MIT Press
    • Yedidia, J., Freeman, W., & Weiss, Y. (2001). Generalized belief propagation. In Leen, T., Dietterich, T., & Tresp, V. (Eds.), Advances in Neural Information Processing Systems 13, pp. 689-695, Cambridge. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 689-695
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 37
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free energy approximations and generalized belief propagation algorithms
    • Yedidia, J., Freeman, W., & Weiss, Y. (2005). Constructing free energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51, 2282-2312.
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 2282-2312
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 38
    • 0036636878 scopus 로고    scopus 로고
    • CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation
    • Yuille, A. (2002). CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation. Neural Computation, 14, 1691-1722.
    • (2002) Neural Computation , vol.14 , pp. 1691-1722
    • Yuille, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.