메뉴 건너뛰기




Volumn 17, Issue 10, 2006, Pages 2731-2739

Phase boundary estimation in electrical resistance tomography with weighted multi-layered neural networks and front point approach

Author keywords

Boundary estimation; Electrical resistance tomography; Front point tracking; Multi layered neural network

Indexed keywords

BOUNDARY CONDITIONS; MULTILAYER NEURAL NETWORKS; NUMERICAL ANALYSIS; NUMERICAL METHODS; PARAMETER ESTIMATION; REAL TIME SYSTEMS;

EID: 33748996511     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/0957-0233/17/10/027     Document Type: Conference Paper
Times cited : (7)

References (19)
  • 1
    • 0028714038 scopus 로고
    • A neural network image reconstruction technique for electrical impedance tomography
    • Adler A and Guardo R 1994 A neural network image reconstruction technique for electrical impedance tomography IEEE Trans. Med. Imaging 13 594-600
    • (1994) IEEE Trans. Med. Imaging , vol.13 , Issue.4 , pp. 594-600
    • Adler, A.1    Guardo, R.2
  • 2
    • 16844364446 scopus 로고    scopus 로고
    • Electrical impedance tomography using level set representation and total variational regularization
    • Chung E T, Chan T F and Tai X C 2005 Electrical impedance tomography using level set representation and total variational regularization J. Comput. Phys. 205 357-72
    • (2005) J. Comput. Phys. , vol.205 , Issue.1 , pp. 357-372
    • Chung, E.T.1    Chan, T.F.2    Tai, X.C.3
  • 3
    • 0002347868 scopus 로고    scopus 로고
    • A shape decomposition technique in electrical impedance tomography
    • Han D K and Prosperetti A 1999 A shape decomposition technique in electrical impedance tomography J. Comput. Phys. 155 75-95
    • (1999) J. Comput. Phys. , vol.155 , Issue.1 , pp. 75-95
    • Han, D.K.1    Prosperetti, A.2
  • 5
    • 16444365978 scopus 로고    scopus 로고
    • Electrical impedance imaging of binary-mixtures with boundary estimation approach based on multilayer neural network
    • Jeon H J, Kim J H, Choi B Y, Kim M C, Kim K Y and Kim S 2005 Electrical impedance imaging of binary-mixtures with boundary estimation approach based on multilayer neural network IEEE Sensors J. 5 313-20
    • (2005) IEEE Sensors J. , vol.5 , Issue.2 , pp. 313-320
    • Jeon, H.J.1    Kim, J.H.2    Choi, B.Y.3    Kim, M.C.4    Kim, K.Y.5    Kim, S.6
  • 6
    • 33645151640 scopus 로고    scopus 로고
    • Phase boundary estimation in electrical impedance tomography with weighted multi-layer neural networks
    • Kim J H, Kang B C, Choi B Y, Lee S H, Kim M C, Kim S, Kim B S and Kim K Y 2006a Phase boundary estimation in electrical impedance tomography with weighted multi-layer neural networks IEEE Trans. Magn. 42 1191-4
    • (2006) IEEE Trans. Magn. , vol.42 , Issue.4 , pp. 1191-1194
    • Kim, J.H.1    Kang, B.C.2    Choi, B.Y.3    Lee, S.H.4    Kim, M.C.5    Kim, S.6    Kim, B.S.7    Kim, K.Y.8
  • 8
    • 3242686293 scopus 로고    scopus 로고
    • Improvement of the electrical impedance tomographic image for the two-phase system with adaptive element grouping technique
    • Kim M C, Kim S, Lee K J and Kim K Y 2004 Improvement of the electrical impedance tomographic image for the two-phase system with adaptive element grouping technique Meas. Sci. Technol. 15 1391-401
    • (2004) Meas. Sci. Technol. , vol.15 , Issue.7 , pp. 1391-1401
    • Kim, M.C.1    Kim, S.2    Lee, K.J.3    Kim, K.Y.4
  • 9
    • 0001029408 scopus 로고    scopus 로고
    • Recovery of region boundaries of piecewise constant coefficients of elliptic PDE from boundary data
    • Kolehmainen V, Arridge S R, Lionheart W R B, Vauhkonen M and Kaipio J P 1999 Recovery of region boundaries of piecewise constant coefficients of elliptic PDE from boundary data Inverse Problems 15 1375-91
    • (1999) Inverse Problems , vol.15 , Issue.5 , pp. 1375-1391
    • Kolehmainen, V.1    Arridge, S.R.2    Lionheart, W.R.B.3    Vauhkonen, M.4    Kaipio, J.P.5
  • 10
    • 20444473098 scopus 로고    scopus 로고
    • A FEM-BEM approach using level-sets in electrical capacitance tomography
    • Kortschak B and Brandstätter B 2005 A FEM-BEM approach using level-sets in electrical capacitance tomography COMPEL 24 591-605
    • (2005) COMPEL , vol.24 , Issue.2 , pp. 591-605
    • Kortschak, B.1    Brandstätter, B.2
  • 11
    • 1342332826 scopus 로고    scopus 로고
    • EIT reconstruction algorithms: Pitfalls, challenges and recent developments
    • Lionheart W R B 2004 EIT reconstruction algorithms: pitfalls, challenges and recent developments Physiol. Meas. 25 125-42
    • (2004) Physiol. Meas. , vol.25 , Issue.1 , pp. 125-142
    • Lionheart, W.R.B.1
  • 12
    • 0036168929 scopus 로고    scopus 로고
    • Optimal imaging with adaptive mesh refinement in electrical impedance tomography
    • Molinari M, Blott B H, Cox S J and Daniell G J 2002 Optimal imaging with adaptive mesh refinement in electrical impedance tomography Physiol. Meas. 23 121-8
    • (2002) Physiol. Meas. , vol.23 , Issue.1 , pp. 121-128
    • Molinari, M.1    Blott, B.H.2    Cox, S.J.3    Daniell, G.J.4
  • 13
    • 0035117773 scopus 로고    scopus 로고
    • Adaptive mesh refinement techniques for electrical impedance tomography
    • Molinari M, Cox S J, Blott B H and Daniell G J 2001 Adaptive mesh refinement techniques for electrical impedance tomography Physiol. Meas. 22 91-6
    • (2001) Physiol. Meas. , vol.22 , Issue.1 , pp. 91-96
    • Molinari, M.1    Cox, S.J.2    Blott, B.H.3    Daniell, G.J.4
  • 14
    • 0000665045 scopus 로고    scopus 로고
    • Two ANN reconstruction methods for electrical impedance tomography
    • Ratajewicz-Mikolajczak E, Shirkoohi G H and Sikora J 1998 Two ANN reconstruction methods for electrical impedance tomography IEEE Trans. Magn. 34 2964-7
    • (1998) IEEE Trans. Magn. , vol.34 , Issue.5 , pp. 2964-2967
    • Ratajewicz-Mikolajczak, E.1    Shirkoohi, G.H.2    Sikora, J.3
  • 19
    • 1342329498 scopus 로고    scopus 로고
    • Identification of flow regimes using back-propagation networks trained on simulated data based on a capacitance tomography sensor
    • Yan H, Liu Y H and Liu C T 2004 Identification of flow regimes using back-propagation networks trained on simulated data based on a capacitance tomography sensor Meas. Sci. Technol. 15 432-6
    • (2004) Meas. Sci. Technol. , vol.15 , Issue.2 , pp. 432-436
    • Yan, H.1    Liu, Y.H.2    Liu, C.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.