-
4
-
-
84951604495
-
Analysis on measure chains-A unified approach to continuous and discrete calculus
-
Hilger S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math. 18 (1990) 18-56
-
(1990)
Results Math.
, vol.18
, pp. 18-56
-
-
Hilger, S.1
-
5
-
-
0002864092
-
Basic calculus on time scales and some of its applications
-
Agarwal R.P., and Bohner M. Basic calculus on time scales and some of its applications. Results Math. 35 (1999) 3-22
-
(1999)
Results Math.
, vol.35
, pp. 3-22
-
-
Agarwal, R.P.1
Bohner, M.2
-
6
-
-
0036538017
-
On Green's functions and positive solutions for boundary value problems on time scales
-
Atici F.M., and Guseinov G.Sh. On Green's functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 141 (2002) 75-99
-
(2002)
J. Comput. Appl. Math.
, vol.141
, pp. 75-99
-
-
Atici, F.M.1
Guseinov, G.Sh.2
-
7
-
-
0036953285
-
The quasilinearization method for boundary value problems on time scales
-
Atici F.M., Eloe P.W., and Kaymakcalan B. The quasilinearization method for boundary value problems on time scales. J. Math. Anal. Appl. 276 (2002) 357-372
-
(2002)
J. Math. Anal. Appl.
, vol.276
, pp. 357-372
-
-
Atici, F.M.1
Eloe, P.W.2
Kaymakcalan, B.3
-
8
-
-
0346946903
-
Topological transversality and boundary value problems on time scales
-
Henderson J., and Tisdell C.C. Topological transversality and boundary value problems on time scales. J. Math. Anal. Appl. 289 (2004) 110-125
-
(2004)
J. Math. Anal. Appl.
, vol.289
, pp. 110-125
-
-
Henderson, J.1
Tisdell, C.C.2
-
9
-
-
0035313847
-
Nonlinear boundary value problems on time scales
-
Agarwal R.P., and O'Regan D. Nonlinear boundary value problems on time scales. Nonlinear Anal. 44 (2001) 527-535
-
(2001)
Nonlinear Anal.
, vol.44
, pp. 527-535
-
-
Agarwal, R.P.1
O'Regan, D.2
-
10
-
-
4344674578
-
Existence of solutions for a one dimensional p-Laplacian on time scales
-
Anderson D., Avery R.I., and Henderson J. Existence of solutions for a one dimensional p-Laplacian on time scales. J. Difference Equ. Appl. 10 (2004) 889-896
-
(2004)
J. Difference Equ. Appl.
, vol.10
, pp. 889-896
-
-
Anderson, D.1
Avery, R.I.2
Henderson, J.3
-
11
-
-
84963960219
-
Double positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales
-
He Z.M. Double positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales. Appl. Anal. 84 (2005) 377-390
-
(2005)
Appl. Anal.
, vol.84
, pp. 377-390
-
-
He, Z.M.1
-
12
-
-
21744457995
-
The existence of positive solutions for the one-dimensional p-Laplacian
-
Wang J.Y. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer. Math. Soc. 125 (1997) 2275-2283
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 2275-2283
-
-
Wang, J.Y.1
-
13
-
-
21744447541
-
On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian
-
Wang J.Y., and Zheng D.W. On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian. Z. Angew. Math. Mech. 77 (1997) 477-479
-
(1997)
Z. Angew. Math. Mech.
, vol.77
, pp. 477-479
-
-
Wang, J.Y.1
Zheng, D.W.2
-
14
-
-
0035426319
-
Extremal solutions for the difference φ{symbol}-Laplacian problem with nonlinear functional boundary conditions
-
Cabada A. Extremal solutions for the difference φ{symbol}-Laplacian problem with nonlinear functional boundary conditions. Comput. Math. Appl. 42 (2001) 593-601
-
(2001)
Comput. Math. Appl.
, vol.42
, pp. 593-601
-
-
Cabada, A.1
-
15
-
-
0037084478
-
Eigenvalues and the one-dimensional p-Laplacian
-
Agarwal R.P., Lü H., and O'Regan D. Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 266 (2002) 383-400
-
(2002)
J. Math. Anal. Appl.
, vol.266
, pp. 383-400
-
-
Agarwal, R.P.1
Lü, H.2
O'Regan, D.3
-
16
-
-
0038346720
-
On the number of positive solutions of nonlinear systems
-
Wang H.Y. On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281 (2003) 287-306
-
(2003)
J. Math. Anal. Appl.
, vol.281
, pp. 287-306
-
-
Wang, H.Y.1
-
17
-
-
0242626792
-
On the existence of positive solutions of p-Laplacian difference equations
-
He Z.M. On the existence of positive solutions of p-Laplacian difference equations. J. Comput. Appl. Math. 161 (2003) 193-201
-
(2003)
J. Comput. Appl. Math.
, vol.161
, pp. 193-201
-
-
He, Z.M.1
-
18
-
-
0037280836
-
Multiple positive solutions to three-point boundary value problem with p-Laplacian operator
-
Liu Y., and Ge W. Multiple positive solutions to three-point boundary value problem with p-Laplacian operator. J. Math. Anal. Appl. 277 (2003) 293-302
-
(2003)
J. Math. Anal. Appl.
, vol.277
, pp. 293-302
-
-
Liu, Y.1
Ge, W.2
-
19
-
-
0038405055
-
Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator
-
Liu Y., and Ge W. Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator. J. Math. Anal. Appl. 278 (2003) 551-561
-
(2003)
J. Math. Anal. Appl.
, vol.278
, pp. 551-561
-
-
Liu, Y.1
Ge, W.2
-
22
-
-
0002418596
-
A generalization of the Leggett-Williams fixed point theorem
-
Avery R.I. A generalization of the Leggett-Williams fixed point theorem. Math. Sci. Res. Hot-Line 2 (1998) 9-14
-
(1998)
Math. Sci. Res. Hot-Line
, vol.2
, pp. 9-14
-
-
Avery, R.I.1
-
23
-
-
0000394603
-
Multiple positive fixed points of nonlinear operators on ordered Banach spaces
-
Leggett R.W., and Williams L.R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979) 673-688
-
(1979)
Indiana Univ. Math. J.
, vol.28
, pp. 673-688
-
-
Leggett, R.W.1
Williams, L.R.2
-
24
-
-
0002377075
-
Three symmetric positive solutions for a second-order boundary value problem
-
Avery R.I., and Henderson J. Three symmetric positive solutions for a second-order boundary value problem. Appl. Math. Lett. 13 3 (2000) 1-7
-
(2000)
Appl. Math. Lett.
, vol.13
, Issue.3
, pp. 1-7
-
-
Avery, R.I.1
Henderson, J.2
-
25
-
-
0037439478
-
Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian
-
Avery R.I., and Henderson J. Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian. J. Math. Anal. Appl. 277 (2003) 395-404
-
(2003)
J. Math. Anal. Appl.
, vol.277
, pp. 395-404
-
-
Avery, R.I.1
Henderson, J.2
-
26
-
-
2642576430
-
Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian
-
Avery R.I., and Henderson J. Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian. J. Difference Equ. Appl. 10 (2004) 529-539
-
(2004)
J. Difference Equ. Appl.
, vol.10
, pp. 529-539
-
-
Avery, R.I.1
Henderson, J.2
-
27
-
-
0242677019
-
Three positive solutions for the one-dimensional p-Laplacian
-
Guo Y.P., and Ge W.G. Three positive solutions for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 286 (2003) 491-508
-
(2003)
J. Math. Anal. Appl.
, vol.286
, pp. 491-508
-
-
Guo, Y.P.1
Ge, W.G.2
-
28
-
-
25144458402
-
Existence of three positive solutions with p-Laplacian
-
Li J., and Shen J. Existence of three positive solutions with p-Laplacian. J. Math. Anal. Appl. 311 (2005) 457-465
-
(2005)
J. Math. Anal. Appl.
, vol.311
, pp. 457-465
-
-
Li, J.1
Shen, J.2
|