메뉴 건너뛰기




Volumn 419, Issue 2-3, 2006, Pages 772-778

Complementary bases in symplectic matrices and a proof that their determinant is one

Author keywords

Complementary bases; Determinant; Patterns of linearly independent rows and columns; Patterns of zeros; Schur complements; Symplectic

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; INVERSE PROBLEMS; LINEAR ALGEBRA; THEOREM PROVING;

EID: 33748889793     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2006.06.014     Document Type: Article
Times cited : (35)

References (10)
  • 3
    • 0000847242 scopus 로고
    • A chart of numerical methods for structured eigenvalue problems
    • Bunse-Gerstner A., Byers R., and Mehrmann V. A chart of numerical methods for structured eigenvalue problems. SIAM J. Matrix Anal. Appl. 13 2 (1992) 419-453
    • (1992) SIAM J. Matrix Anal. Appl. , vol.13 , Issue.2 , pp. 419-453
    • Bunse-Gerstner, A.1    Byers, R.2    Mehrmann, V.3
  • 6
    • 0000902795 scopus 로고    scopus 로고
    • Canonical forms for Hamiltonian and symplectic matrices and pencils
    • Lin W.-W., Mehrmann V., and Xu H. Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 302-303 (1999) 469-533
    • (1999) Linear Algebra Appl. , vol.302-303 , pp. 469-533
    • Lin, W.-W.1    Mehrmann, V.2    Xu, H.3
  • 8
    • 33748899083 scopus 로고    scopus 로고
    • D.S. Mackey, N. Mackey, On the determinant of symplectic matrices, Numerical Analysis Report No. 422, Manchester Centre for Computational Mathematics, Manchester, England, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.