메뉴 건너뛰기




Volumn 25, Issue , 2005, Pages 553-588

Dynamic Models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33748297949     PISSN: 01697161     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0169-7161(05)25019-8     Document Type: Review
Times cited : (43)

References (108)
  • 1
    • 0034413190 scopus 로고    scopus 로고
    • Bayesian dynamic factor models and variance matrix discounting for portfolio allocation
    • Aguilar O., and West M. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18 (2000) 338-357
    • (2000) J. Business Econom. Statist. , vol.18 , pp. 338-357
    • Aguilar, O.1    West, M.2
  • 2
    • 0012155902 scopus 로고
    • Normal discount Bayesian models
    • Bernardo D.M.H.L.D.V., and Smith A.F.M. (Eds), North-Holland and Valencia University Press
    • Ameen J.R.M., and Harisson P. Normal discount Bayesian models. In: Bernardo D.M.H.L.D.V., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 2 (1985), North-Holland and Valencia University Press
    • (1985) Bayesian Statistics, vol. 2
    • Ameen, J.R.M.1    Harisson, P.2
  • 5
    • 67649318897 scopus 로고    scopus 로고
    • Banerjee, S., Gamerman, D., Gelfand, A.E. (2003). Spatial process modelling for univariate and multivariate dynamic spatial data. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
    • Banerjee, S., Gamerman, D., Gelfand, A.E. (2003). Spatial process modelling for univariate and multivariate dynamic spatial data. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
  • 6
    • 1542428588 scopus 로고    scopus 로고
    • Longitudinal data analysis of animal growth via multivariate dynamic models
    • Barbosa E.P., and Migon H.S. Longitudinal data analysis of animal growth via multivariate dynamic models. Comm. Statist. Simulation 25 (1996) 369-380
    • (1996) Comm. Statist. Simulation , vol.25 , pp. 369-380
    • Barbosa, E.P.1    Migon, H.S.2
  • 7
    • 0026908846 scopus 로고
    • Multiscale autoregressive processes, part i: Schur-Levinson parameterizations
    • Basseville M., Benveniste A., and Willsky A.S. Multiscale autoregressive processes, part i: Schur-Levinson parameterizations. IEEE Trans. Signal Process. 40 (1992) 1915-1934
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 1915-1934
    • Basseville, M.1    Benveniste, A.2    Willsky, A.S.3
  • 8
    • 0031321240 scopus 로고    scopus 로고
    • Dynamic conditional independence models and Markov chain Monte Carlo methods
    • Berzuini C., Best N., Gilks W., and Larizza C. Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Amer. Statist. Assoc. 92 (1997) 1403-1412
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 1403-1412
    • Berzuini, C.1    Best, N.2    Gilks, W.3    Larizza, C.4
  • 9
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • Besag J. Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc., Ser. B 36 (1974) 192-236
    • (1974) J. Roy. Statist. Soc., Ser. B , vol.36 , pp. 192-236
    • Besag, J.1
  • 10
    • 4243898703 scopus 로고    scopus 로고
    • Deterministic and stochastic particle filters in state-space models
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Bolviken E., and Storvik G. Deterministic and stochastic particle filters in state-space models. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
    • (2001) Sequential Monte Carlo Methods in Practice
    • Bolviken, E.1    Storvik, G.2
  • 11
    • 0028392841 scopus 로고
    • A multiscale random field model for Bayesian image segmentation
    • Bouman C.A., and Shapiro M. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3 2 (1994) 162-177
    • (1994) IEEE Trans. Image Process. , vol.3 , Issue.2 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 14
    • 84950445183 scopus 로고
    • A Monte Carlo approach to nonnormal and nonlinear state-space modeling
    • Carlin B.P., Polson N.G., and Stoffer D.S. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Amer. Statist. Assoc. 87 (1992) 493-500
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 493-500
    • Carlin, B.P.1    Polson, N.G.2    Stoffer, D.S.3
  • 15
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter C., and Kohn R. On Gibbs sampling for state space models. Biometrika 81 (1994) 541-553
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.1    Kohn, R.2
  • 16
    • 0028398860 scopus 로고
    • Multiscale recursive estimation, data fusion, and regularization
    • Chou K.C., Willsky A.S., and Benveniste A. Multiscale recursive estimation, data fusion, and regularization. IEEE Trans. Automat. Control 39 (1994) 464-478
    • (1994) IEEE Trans. Automat. Control , vol.39 , pp. 464-478
    • Chou, K.C.1    Willsky, A.S.2    Benveniste, A.3
  • 17
    • 21344495004 scopus 로고
    • Comment on "An approach to statistical spatial-temporal modeling of meteorological fields" by M.S. Handcock and J.R. Wallis
    • Cressie N. Comment on "An approach to statistical spatial-temporal modeling of meteorological fields" by M.S. Handcock and J.R. Wallis. J. Amer. Statist. Assoc. 89 426 (1994) 379-382
    • (1994) J. Amer. Statist. Assoc. , vol.89 , Issue.426 , pp. 379-382
    • Cressie, N.1
  • 18
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable spatio-temporal stationary covariance functions
    • Cressie N., and Huang H.C. Classes of nonseparable spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94 448 (1999) 1330-1340
    • (1999) J. Amer. Statist. Assoc. , vol.94 , Issue.448 , pp. 1330-1340
    • Cressie, N.1    Huang, H.C.2
  • 19
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering for practitioners
    • Crisan D., and Doucet A. A survey of convergence results on particle filtering for practitioners. IEEE Trans. Signal Process. 50 3 (2002) 736-746
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.3 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 20
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt J., and Robert C. Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc., Ser. B 56 (1994) 163-175
    • (1994) J. Roy. Statist. Soc., Ser. B , vol.56 , pp. 163-175
    • Diebolt, J.1    Robert, C.2
  • 21
    • 67649320065 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for Bayesian analysis
    • Doucet A. Sequential Monte Carlo methods for Bayesian analysis. ISBA Bull. 10 1 (2003) 2-4
    • (2003) ISBA Bull. , vol.10 , Issue.1 , pp. 2-4
    • Doucet, A.1
  • 22
    • 67649368894 scopus 로고    scopus 로고
    • Particle filters in state space models with the presence of unknown static parameters
    • Submitted for publication
    • Doucet, A., Tadić, V. (2003). Particle filters in state space models with the presence of unknown static parameters. Ann. Inst. Statist. Math. Submitted for publication
    • (2003) Ann. Inst. Statist. Math
    • Doucet, A.1    Tadić, V.2
  • 24
    • 3142711588 scopus 로고    scopus 로고
    • A simple and efficient simulation smoother for state space time series analysis
    • Durbin J., and Koopman S. A simple and efficient simulation smoother for state space time series analysis. Biometrika 89 (2002) 603-615
    • (2002) Biometrika , vol.89 , pp. 603-615
    • Durbin, J.1    Koopman, S.2
  • 25
    • 33846549675 scopus 로고    scopus 로고
    • Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University
    • Ferreira, M.A.R. (2002). Bayesian multi-scale modelling. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University
    • (2002) Bayesian multi-scale modelling
    • Ferreira, M.A.R.1
  • 27
    • 84981426681 scopus 로고
    • Data augmentation and dynamic linear models
    • Frühwirth-Schnatter S. Data augmentation and dynamic linear models. J. Time Series Anal. 15 (1994) 183-202
    • (1994) J. Time Series Anal. , vol.15 , pp. 183-202
    • Frühwirth-Schnatter, S.1
  • 29
    • 0001053807 scopus 로고    scopus 로고
    • Markov chain Monte Carlo for dynamic generalized linear models
    • Gamerman D. Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85 (1998) 215-227
    • (1998) Biometrika , vol.85 , pp. 215-227
    • Gamerman, D.1
  • 32
    • 31244433870 scopus 로고    scopus 로고
    • Bayesian analysis of econometric time series models using hybrid integration rules
    • Gamerman D., and Moreira A.R.B. Bayesian analysis of econometric time series models using hybrid integration rules. Comm. Statist. 31 (2002) 49-72
    • (2002) Comm. Statist. , vol.31 , pp. 49-72
    • Gamerman, D.1    Moreira, A.R.B.2
  • 33
    • 0037471367 scopus 로고    scopus 로고
    • Space-varying regression models: Specifications and simulation
    • Gamerman D., Moreira A.R.B., and Rue H. Space-varying regression models: Specifications and simulation. Comput. Statist. Data Anal. 42 (2003) 513-533
    • (2003) Comput. Statist. Data Anal. , vol.42 , pp. 513-533
    • Gamerman, D.1    Moreira, A.R.B.2    Rue, H.3
  • 34
    • 67649339671 scopus 로고    scopus 로고
    • Gargallo, P., Salvador, M. (2002). Joint monitoring of several types of shocks in dynamic linear models: A Bayesian decision approach. Technical Report, Faculdad de Ciencias Económicas y Empresariales, Universidad de Zaragoza
    • Gargallo, P., Salvador, M. (2002). Joint monitoring of several types of shocks in dynamic linear models: A Bayesian decision approach. Technical Report, Faculdad de Ciencias Económicas y Empresariales, Universidad de Zaragoza
  • 35
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman S., and Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence 6 (1984) 721-741
    • (1984) IEEE Trans. Pattern Anal. Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 36
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 (1989) 1317-1339
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 37
    • 0003098460 scopus 로고
    • Applications of estimation theory to numerical weather prediction
    • Bengtsson L., Ghil M., and Källén E. (Eds), Springer-Verlag, New York
    • Ghil M., Cohn S., Tavantzis J., Bube K., and Isaacson E. Applications of estimation theory to numerical weather prediction. In: Bengtsson L., Ghil M., and Källén E. (Eds). Dynamic Meteorology: Data Assimilation Methods (1981), Springer-Verlag, New York 139-224
    • (1981) Dynamic Meteorology: Data Assimilation Methods , pp. 139-224
    • Ghil, M.1    Cohn, S.2    Tavantzis, J.3    Bube, K.4    Isaacson, E.5
  • 39
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon N., Salmond D., and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140 (1993) 107-113
    • (1993) IEE Proc. F , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.3
  • 40
    • 84950427374 scopus 로고
    • An approach to statistical spatial-temporal modeling of meteorological fields
    • Handcock M., and Wallis J. An approach to statistical spatial-temporal modeling of meteorological fields. J. Amer. Statist. Assoc. 89 426 (1994) 368-390
    • (1994) J. Amer. Statist. Assoc. , vol.89 , Issue.426 , pp. 368-390
    • Handcock, M.1    Wallis, J.2
  • 41
    • 0242501579 scopus 로고    scopus 로고
    • Statistical process control and model monitoring
    • Harrison P.J., and Lai I.C. Statistical process control and model monitoring. J. Appl. Statist. 26 (1999) 273-292
    • (1999) J. Appl. Statist. , vol.26 , pp. 273-292
    • Harrison, P.J.1    Lai, I.C.2
  • 45
    • 0001917942 scopus 로고
    • Space-time modeling with long-memory dependence: Assessing ireland's wind power resource (with discussion)
    • Haslett J., and Raftery A. Space-time modeling with long-memory dependence: Assessing ireland's wind power resource (with discussion). J. Roy. Statist. Soc., Ser. C 38 (1989) 1-50
    • (1989) J. Roy. Statist. Soc., Ser. C , vol.38 , pp. 1-50
    • Haslett, J.1    Raftery, A.2
  • 46
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 47
    • 0000489685 scopus 로고
    • Observations on the statistical iteration of matrices
    • Hetherington J. Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713-2719
    • (1984) Phys. Rev. A , vol.30 , pp. 2713-2719
    • Hetherington, J.1
  • 48
    • 0031294907 scopus 로고    scopus 로고
    • Monte Carlo filter using the genetic algorithm operator
    • Higuchi T. Monte Carlo filter using the genetic algorithm operator. J. Statist. Comput. Simulation 59 (1997) 1-23
    • (1997) J. Statist. Comput. Simulation , vol.59 , pp. 1-23
    • Higuchi, T.1
  • 49
    • 12244255598 scopus 로고    scopus 로고
    • Self-organizing time series model
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Higuchi T. Self-organizing time series model. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
    • (2001) Sequential Monte Carlo Methods in Practice
    • Higuchi, T.1
  • 51
    • 2342549244 scopus 로고    scopus 로고
    • A spatio-temporal model for Mexico city ozone levels
    • Submitted for publication
    • Huerta, G., Sansó, B., Stroud, J.R. (2004). A spatio-temporal model for Mexico city ozone levels. Appl. Statist. Submitted for publication
    • (2004) Appl. Statist
    • Huerta, G.1    Sansó, B.2    Stroud, J.R.3
  • 52
    • 0031275764 scopus 로고    scopus 로고
    • An overlapping tree approach to multiscale stochastic modeling and estimation
    • Irving W.W., Fieguth P.W., and Willsky A.S. An overlapping tree approach to multiscale stochastic modeling and estimation. IEEE Trans. Image Process. 6 (1997) 1517-1529
    • (1997) IEEE Trans. Image Process. , vol.6 , pp. 1517-1529
    • Irving, W.W.1    Fieguth, P.W.2    Willsky, A.S.3
  • 53
    • 67649324261 scopus 로고    scopus 로고
    • Variance-covariance modeling and estimation for multi-resolution spatial models
    • Technical Report, Department of Statistics, Ohio State University
    • Johannesson, G., Cressie, N. (2003). Variance-covariance modeling and estimation for multi-resolution spatial models. Technical Report, Department of Statistics, Ohio State University
    • (2003)
    • Johannesson, G.1    Cressie, N.2
  • 56
    • 0029732459 scopus 로고    scopus 로고
    • A hierarchical Markov random field model and multi-temperature annealing for parallel image classification
    • Kato Z., Berthod M., and Zerubia J. A hierarchical Markov random field model and multi-temperature annealing for parallel image classification. Graph. Models Image Process. 58 1 (1996) 18-37
    • (1996) Graph. Models Image Process. , vol.58 , Issue.1 , pp. 18-37
    • Kato, Z.1    Berthod, M.2    Zerubia, J.3
  • 57
    • 0029732459 scopus 로고    scopus 로고
    • Unsupervised parallel image classification using Markovian models
    • Kato Z., Zerubia J., and Berthod M. Unsupervised parallel image classification using Markovian models. Graph. Models Image Process. 58 1 (1996) 18-37
    • (1996) Graph. Models Image Process. , vol.58 , Issue.1 , pp. 18-37
    • Kato, Z.1    Zerubia, J.2    Berthod, M.3
  • 58
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • Kim S., Shephard N., and Chib S. Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econom. Studies 65 (1998) 361-393
    • (1998) Rev. Econom. Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 59
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series (with discussion)
    • Kitagawa G. Non-Gaussian state-space modeling of nonstationary time series (with discussion). J. Amer. Statist. Assoc. 82 (1987) 1032-1063
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 60
    • 67649339669 scopus 로고    scopus 로고
    • Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models. In: Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis. Honolulu, Hawaii, pp. 110-131
    • Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models. In: Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis. Honolulu, Hawaii, pp. 110-131
  • 61
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 (1996) 1-25
    • (1996) J. Comput. Graph. Statist. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 62
    • 0033240221 scopus 로고    scopus 로고
    • Conditional prior proposal in dynamic models
    • Knorr-Held L. Conditional prior proposal in dynamic models. Scand. J. Statist. 26 (1999) 129-144
    • (1999) Scand. J. Statist. , vol.26 , pp. 129-144
    • Knorr-Held, L.1
  • 63
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • Barndorff-Nielsen D., and Klüppelberg C. (Eds), Chapman and Hall, Boca Raton
    • Künsch H. State space and hidden Markov models. In: Barndorff-Nielsen D., and Klüppelberg C. (Eds). Complex Stochastic Systems (2001), Chapman and Hall, Boca Raton
    • (2001) Complex Stochastic Systems
    • Künsch, H.1
  • 64
    • 0033878097 scopus 로고    scopus 로고
    • Discrete Markov image modeling and inference on the quadtree
    • Laferté J.-M., Pérez P., and Heitz F. Discrete Markov image modeling and inference on the quadtree. IEEE Trans. Image Process. 9 3 (2000) 390-404
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.3 , pp. 390-404
    • Laferté, J.-M.1    Pérez, P.2    Heitz, F.3
  • 65
    • 0034318798 scopus 로고    scopus 로고
    • Dynamic hierarchical models - an extension to matricvariate observations
    • Landim F., and Gamerman D. Dynamic hierarchical models - an extension to matricvariate observations. Comput. Statist. Data Anal. 35 (2000) 11-42
    • (2000) Comput. Statist. Data Anal. , vol.35 , pp. 11-42
    • Landim, F.1    Gamerman, D.2
  • 66
    • 85056409648 scopus 로고    scopus 로고
    • Another look at conditionally Gaussian Markov random fields
    • Bernardo J., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds), Oxford Universtity Press
    • Lavine M. Another look at conditionally Gaussian Markov random fields. In: Bernardo J., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 6 (1999), Oxford Universtity Press 577-585
    • (1999) Bayesian Statistics, vol. 6 , pp. 577-585
    • Lavine, M.1
  • 68
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Liu J., and West M. Combined parameter and state estimation in simulation-based filtering. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
    • (2001) Sequential Monte Carlo Methods in Practice
    • Liu, J.1    West, M.2
  • 70
    • 67649315675 scopus 로고    scopus 로고
    • Lopes, H. (2002). Sequential analysis of stochastic volatility models: Some econometric applications. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
    • Lopes, H. (2002). Sequential analysis of stochastic volatility models: Some econometric applications. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
  • 71
    • 67649308049 scopus 로고    scopus 로고
    • Lopes, H., Marinho, C. (2002). A particle filter algorithm for the Markov switching stochastic volatility model. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
    • Lopes, H., Marinho, C. (2002). A particle filter algorithm for the Markov switching stochastic volatility model. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
  • 73
    • 25444457509 scopus 로고    scopus 로고
    • The Kriged Kalman filter (with discussion)
    • Mardia K., Goodall C., Redfern E., and Alonso F. The Kriged Kalman filter (with discussion). Test 7 (1998) 217-285
    • (1998) Test , vol.7 , pp. 217-285
    • Mardia, K.1    Goodall, C.2    Redfern, E.3    Alonso, F.4
  • 75
    • 33646533501 scopus 로고    scopus 로고
    • The prediction of Brazilian exports using Bayesian forecasting
    • Migon H.S. The prediction of Brazilian exports using Bayesian forecasting. Investigation Operativa 9 (2000) 95-106
    • (2000) Investigation Operativa , vol.9 , pp. 95-106
    • Migon, H.S.1
  • 76
    • 84979330299 scopus 로고
    • Generalised exponential modell - Δ Bayesian approach
    • Migon H.S., and Gamerman D. Generalised exponential modell - Δ Bayesian approach. J. Forecasting 12 (1993) 573-584
    • (1993) J. Forecasting , vol.12 , pp. 573-584
    • Migon, H.S.1    Gamerman, D.2
  • 78
    • 0040211272 scopus 로고
    • An application of nonlinear Bayesian forecasting to TV advertising
    • Bernardo J.M., DeGroot M.H., Lindley D., and Smith A.F.M. (Eds), North-Holland and Valencia University Press
    • Migon H.S., and Harrison P.J. An application of nonlinear Bayesian forecasting to TV advertising. In: Bernardo J.M., DeGroot M.H., Lindley D., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 2 (1985), North-Holland and Valencia University Press
    • (1985) Bayesian Statistics, vol. 2
    • Migon, H.S.1    Harrison, P.J.2
  • 79
    • 67649345311 scopus 로고    scopus 로고
    • Bayesian garch models: Approximated methods and applications
    • Migon H.S., and Mazuchelli J. Bayesian garch models: Approximated methods and applications. Rev. Brasil. Econom. 1999 (1999) 111-138
    • (1999) Rev. Brasil. Econom. , vol.1999 , pp. 111-138
    • Migon, H.S.1    Mazuchelli, J.2
  • 80
    • 67649331329 scopus 로고    scopus 로고
    • Dynamic models: An application to rainfall-runoff modelling
    • Monteiro A., and Migon H.S. Dynamic models: An application to rainfall-runoff modelling. Stochastic Hydrology and Hydraulics 11 (1997) 115-127
    • (1997) Stochastic Hydrology and Hydraulics , vol.11 , pp. 115-127
    • Monteiro, A.1    Migon, H.S.2
  • 81
    • 0000507270 scopus 로고
    • Monte Carlo integration in general dynamic models
    • Müller P. Monte Carlo integration in general dynamic models. Contemp. Math. 115 (1991) 145-163
    • (1991) Contemp. Math. , vol.115 , pp. 145-163
    • Müller, P.1
  • 82
    • 0040408818 scopus 로고
    • Posterior integration in dynamic models
    • Müller P. Posterior integration in dynamic models. Comput. Sci. Statist. 24 (1992) 318-324
    • (1992) Comput. Sci. Statist. , vol.24 , pp. 318-324
    • Müller, P.1
  • 84
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt M., and Shephard N. Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 (1999) 590-599
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 590-599
    • Pitt, M.1    Shephard, N.2
  • 85
    • 84979376623 scopus 로고
    • Efficient Bayesian learning in nonlinear dynamic models
    • Pole A., and West M. Efficient Bayesian learning in nonlinear dynamic models. J. Forecasting 9 (1990) 119-136
    • (1990) J. Forecasting , vol.9 , pp. 119-136
    • Pole, A.1    West, M.2
  • 87
    • 0043243999 scopus 로고    scopus 로고
    • Practical filtering with sequential parameter learning
    • Technical Report, Graduate School of Business, University of Chicago
    • Polson, N., Stroud, J. Müller, P. (2002). Practical filtering with sequential parameter learning. Technical Report, Graduate School of Business, University of Chicago
    • (2002)
    • Polson, N.1    Stroud, J.2    Müller, P.3
  • 89
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • Bernardo, J, DeGroot, M, Lindley, D, Smith, A, Eds
    • Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (Eds.), Bayesian Statistics, vol. 3
    • (1988) Bayesian Statistics , vol.3
    • Rubin, D.1
  • 90
    • 0035649131 scopus 로고    scopus 로고
    • Fast sampling of Gaussian Markov random fields
    • Rue H. Fast sampling of Gaussian Markov random fields. J. Roy. Statist. Soc., Ser. B 65 (2001) 325-338
    • (2001) J. Roy. Statist. Soc., Ser. B , vol.65 , pp. 325-338
    • Rue, H.1
  • 91
  • 92
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard N., and Pitt M.K. Likelihood analysis of non-Gaussian measurement time series. Biometrika 84 (1997) 653-667
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 93
    • 0000713247 scopus 로고
    • State space modelling of cross-classified time series of counts
    • Singh A.C., and Roberts G.R. State space modelling of cross-classified time series of counts. Internat. Statist. Rev. 60 (1992) 321-336
    • (1992) Internat. Statist. Rev. , vol.60 , pp. 321-336
    • Singh, A.C.1    Roberts, G.R.2
  • 94
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • Smith A., and Gelfand A. Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 (1993) 84-88
    • (1993) Amer. Statist. , vol.46 , pp. 84-88
    • Smith, A.1    Gelfand, A.2
  • 95
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters in state space models with the presence of unknown static parameters
    • Storvik G. Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50 2 (2002) 281-289
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 281-289
    • Storvik, G.1
  • 97
    • 67649384402 scopus 로고    scopus 로고
    • Triantafyllopoulos, K., Harrison, P. (2002). Stochastic volatility forecasting with dynamic models. Research Report sta02-06, School of Mathematics and Statistics, University of Newcastle
    • Triantafyllopoulos, K., Harrison, P. (2002). Stochastic volatility forecasting with dynamic models. Research Report sta02-06, School of Mathematics and Statistics, University of Newcastle
  • 98
    • 67649315673 scopus 로고    scopus 로고
    • A new class of spatio-temporal models
    • Technical Report, Universidade Federal do Rio de Janeiro
    • Vivar-Rojas, J.C., Ferreira, M.A.R. (2003). A new class of spatio-temporal models. Technical Report, Universidade Federal do Rio de Janeiro
    • (2003)
    • Vivar-Rojas, J.C.1    Ferreira, M.A.R.2
  • 100
    • 0000782444 scopus 로고
    • Approximating posterior distributions by mixtures
    • West M. Approximating posterior distributions by mixtures. J. Roy. Statist. Soc., Ser. B 55 (1993) 409-422
    • (1993) J. Roy. Statist. Soc., Ser. B , vol.55 , pp. 409-422
    • West, M.1
  • 101
    • 0003115252 scopus 로고
    • Mixture models, Monte Carlo, Bayesian updating and dynamic models
    • Newton J. (Ed), Interface Foundation of North America, Fairfax Station, VA
    • West M. Mixture models, Monte Carlo, Bayesian updating and dynamic models. In: Newton J. (Ed). Computing Science and Statistics: Proceedings of the 24th Symposium of the Interface (1993), Interface Foundation of North America, Fairfax Station, VA 325-333
    • (1993) Computing Science and Statistics: Proceedings of the 24th Symposium of the Interface , pp. 325-333
    • West, M.1
  • 102
    • 0039518617 scopus 로고
    • Monitoring and adaptation in Bayesian forecasting models
    • West M., and Harrison P.J. Monitoring and adaptation in Bayesian forecasting models. J. Amer. Statist. Assoc. 81 (1986) 741-750
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 741-750
    • West, M.1    Harrison, P.J.2
  • 104
    • 84919201360 scopus 로고
    • Dynamic generalized linear model and Bayesian forecasting
    • West M., Harrison P.J., and Migon H. Dynamic generalized linear model and Bayesian forecasting. J. Amer. Statist. Assoc. 80 (1985) 73-97
    • (1985) J. Amer. Statist. Assoc. , vol.80 , pp. 73-97
    • West, M.1    Harrison, P.J.2    Migon, H.3
  • 105
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle C., and Cressie N. A dimension-reduced approach to space-time Kalman filtering. Biometrika 86 (1999) 815-829
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.1    Cressie, N.2
  • 106
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • Wikle C.K. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84 (2003) 1382-1394
    • (2003) Ecology , vol.84 , pp. 1382-1394
    • Wikle, C.K.1
  • 107
    • 67649339668 scopus 로고    scopus 로고
    • A kernel-based spectral approach for spatiotemporal dynamic models
    • Technical Report, Department of Statistics, University of Missouri
    • Wikle, C.K. (2003). A kernel-based spectral approach for spatiotemporal dynamic models. Technical Report, Department of Statistics, University of Missouri
    • (2003)
    • Wikle, C.K.1
  • 108
    • 1542469523 scopus 로고    scopus 로고
    • Spatio-temporal hierarchical Bayesian modeling: Tropical ocean surface winds
    • Wikle C.K., Milliff R.F., Nychka D., and Berliner L.M. Spatio-temporal hierarchical Bayesian modeling: Tropical ocean surface winds. J. Amer. Statist. Assoc. 96 (2001) 382-397
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 382-397
    • Wikle, C.K.1    Milliff, R.F.2    Nychka, D.3    Berliner, L.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.