-
1
-
-
0034413190
-
Bayesian dynamic factor models and variance matrix discounting for portfolio allocation
-
Aguilar O., and West M. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18 (2000) 338-357
-
(2000)
J. Business Econom. Statist.
, vol.18
, pp. 338-357
-
-
Aguilar, O.1
West, M.2
-
2
-
-
0012155902
-
Normal discount Bayesian models
-
Bernardo D.M.H.L.D.V., and Smith A.F.M. (Eds), North-Holland and Valencia University Press
-
Ameen J.R.M., and Harisson P. Normal discount Bayesian models. In: Bernardo D.M.H.L.D.V., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 2 (1985), North-Holland and Valencia University Press
-
(1985)
Bayesian Statistics, vol. 2
-
-
Ameen, J.R.M.1
Harisson, P.2
-
5
-
-
67649318897
-
-
Banerjee, S., Gamerman, D., Gelfand, A.E. (2003). Spatial process modelling for univariate and multivariate dynamic spatial data. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
Banerjee, S., Gamerman, D., Gelfand, A.E. (2003). Spatial process modelling for univariate and multivariate dynamic spatial data. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
-
-
-
6
-
-
1542428588
-
Longitudinal data analysis of animal growth via multivariate dynamic models
-
Barbosa E.P., and Migon H.S. Longitudinal data analysis of animal growth via multivariate dynamic models. Comm. Statist. Simulation 25 (1996) 369-380
-
(1996)
Comm. Statist. Simulation
, vol.25
, pp. 369-380
-
-
Barbosa, E.P.1
Migon, H.S.2
-
7
-
-
0026908846
-
Multiscale autoregressive processes, part i: Schur-Levinson parameterizations
-
Basseville M., Benveniste A., and Willsky A.S. Multiscale autoregressive processes, part i: Schur-Levinson parameterizations. IEEE Trans. Signal Process. 40 (1992) 1915-1934
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, pp. 1915-1934
-
-
Basseville, M.1
Benveniste, A.2
Willsky, A.S.3
-
8
-
-
0031321240
-
Dynamic conditional independence models and Markov chain Monte Carlo methods
-
Berzuini C., Best N., Gilks W., and Larizza C. Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Amer. Statist. Assoc. 92 (1997) 1403-1412
-
(1997)
J. Amer. Statist. Assoc.
, vol.92
, pp. 1403-1412
-
-
Berzuini, C.1
Best, N.2
Gilks, W.3
Larizza, C.4
-
9
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems (with discussion)
-
Besag J. Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc., Ser. B 36 (1974) 192-236
-
(1974)
J. Roy. Statist. Soc., Ser. B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
10
-
-
4243898703
-
Deterministic and stochastic particle filters in state-space models
-
Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
-
Bolviken E., and Storvik G. Deterministic and stochastic particle filters in state-space models. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Bolviken, E.1
Storvik, G.2
-
11
-
-
0028392841
-
A multiscale random field model for Bayesian image segmentation
-
Bouman C.A., and Shapiro M. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3 2 (1994) 162-177
-
(1994)
IEEE Trans. Image Process.
, vol.3
, Issue.2
, pp. 162-177
-
-
Bouman, C.A.1
Shapiro, M.2
-
13
-
-
0035649063
-
Space-time calibration of radar-rainfall data
-
Brown P.E., Diggle P.J., Lord M.E., and Young P.C. Space-time calibration of radar-rainfall data. J. Roy. Statist. Soc., Ser. C (Applied Statistics) 50 (2001) 221-241
-
(2001)
J. Roy. Statist. Soc., Ser. C (Applied Statistics)
, vol.50
, pp. 221-241
-
-
Brown, P.E.1
Diggle, P.J.2
Lord, M.E.3
Young, P.C.4
-
14
-
-
84950445183
-
A Monte Carlo approach to nonnormal and nonlinear state-space modeling
-
Carlin B.P., Polson N.G., and Stoffer D.S. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Amer. Statist. Assoc. 87 (1992) 493-500
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 493-500
-
-
Carlin, B.P.1
Polson, N.G.2
Stoffer, D.S.3
-
15
-
-
0000193853
-
On Gibbs sampling for state space models
-
Carter C., and Kohn R. On Gibbs sampling for state space models. Biometrika 81 (1994) 541-553
-
(1994)
Biometrika
, vol.81
, pp. 541-553
-
-
Carter, C.1
Kohn, R.2
-
16
-
-
0028398860
-
Multiscale recursive estimation, data fusion, and regularization
-
Chou K.C., Willsky A.S., and Benveniste A. Multiscale recursive estimation, data fusion, and regularization. IEEE Trans. Automat. Control 39 (1994) 464-478
-
(1994)
IEEE Trans. Automat. Control
, vol.39
, pp. 464-478
-
-
Chou, K.C.1
Willsky, A.S.2
Benveniste, A.3
-
17
-
-
21344495004
-
Comment on "An approach to statistical spatial-temporal modeling of meteorological fields" by M.S. Handcock and J.R. Wallis
-
Cressie N. Comment on "An approach to statistical spatial-temporal modeling of meteorological fields" by M.S. Handcock and J.R. Wallis. J. Amer. Statist. Assoc. 89 426 (1994) 379-382
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, Issue.426
, pp. 379-382
-
-
Cressie, N.1
-
18
-
-
0442325070
-
Classes of nonseparable spatio-temporal stationary covariance functions
-
Cressie N., and Huang H.C. Classes of nonseparable spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94 448 (1999) 1330-1340
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, Issue.448
, pp. 1330-1340
-
-
Cressie, N.1
Huang, H.C.2
-
19
-
-
0036504051
-
A survey of convergence results on particle filtering for practitioners
-
Crisan D., and Doucet A. A survey of convergence results on particle filtering for practitioners. IEEE Trans. Signal Process. 50 3 (2002) 736-746
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.3
, pp. 736-746
-
-
Crisan, D.1
Doucet, A.2
-
20
-
-
0001244941
-
Estimation of finite mixture distributions through Bayesian sampling
-
Diebolt J., and Robert C. Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc., Ser. B 56 (1994) 163-175
-
(1994)
J. Roy. Statist. Soc., Ser. B
, vol.56
, pp. 163-175
-
-
Diebolt, J.1
Robert, C.2
-
21
-
-
67649320065
-
Sequential Monte Carlo methods for Bayesian analysis
-
Doucet A. Sequential Monte Carlo methods for Bayesian analysis. ISBA Bull. 10 1 (2003) 2-4
-
(2003)
ISBA Bull.
, vol.10
, Issue.1
, pp. 2-4
-
-
Doucet, A.1
-
22
-
-
67649368894
-
Particle filters in state space models with the presence of unknown static parameters
-
Submitted for publication
-
Doucet, A., Tadić, V. (2003). Particle filters in state space models with the presence of unknown static parameters. Ann. Inst. Statist. Math. Submitted for publication
-
(2003)
Ann. Inst. Statist. Math
-
-
Doucet, A.1
Tadić, V.2
-
24
-
-
3142711588
-
A simple and efficient simulation smoother for state space time series analysis
-
Durbin J., and Koopman S. A simple and efficient simulation smoother for state space time series analysis. Biometrika 89 (2002) 603-615
-
(2002)
Biometrika
, vol.89
, pp. 603-615
-
-
Durbin, J.1
Koopman, S.2
-
25
-
-
33846549675
-
-
Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University
-
Ferreira, M.A.R. (2002). Bayesian multi-scale modelling. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University
-
(2002)
Bayesian multi-scale modelling
-
-
Ferreira, M.A.R.1
-
27
-
-
84981426681
-
Data augmentation and dynamic linear models
-
Frühwirth-Schnatter S. Data augmentation and dynamic linear models. J. Time Series Anal. 15 (1994) 183-202
-
(1994)
J. Time Series Anal.
, vol.15
, pp. 183-202
-
-
Frühwirth-Schnatter, S.1
-
29
-
-
0001053807
-
Markov chain Monte Carlo for dynamic generalized linear models
-
Gamerman D. Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85 (1998) 215-227
-
(1998)
Biometrika
, vol.85
, pp. 215-227
-
-
Gamerman, D.1
-
32
-
-
31244433870
-
Bayesian analysis of econometric time series models using hybrid integration rules
-
Gamerman D., and Moreira A.R.B. Bayesian analysis of econometric time series models using hybrid integration rules. Comm. Statist. 31 (2002) 49-72
-
(2002)
Comm. Statist.
, vol.31
, pp. 49-72
-
-
Gamerman, D.1
Moreira, A.R.B.2
-
33
-
-
0037471367
-
Space-varying regression models: Specifications and simulation
-
Gamerman D., Moreira A.R.B., and Rue H. Space-varying regression models: Specifications and simulation. Comput. Statist. Data Anal. 42 (2003) 513-533
-
(2003)
Comput. Statist. Data Anal.
, vol.42
, pp. 513-533
-
-
Gamerman, D.1
Moreira, A.R.B.2
Rue, H.3
-
34
-
-
67649339671
-
-
Gargallo, P., Salvador, M. (2002). Joint monitoring of several types of shocks in dynamic linear models: A Bayesian decision approach. Technical Report, Faculdad de Ciencias Económicas y Empresariales, Universidad de Zaragoza
-
Gargallo, P., Salvador, M. (2002). Joint monitoring of several types of shocks in dynamic linear models: A Bayesian decision approach. Technical Report, Faculdad de Ciencias Económicas y Empresariales, Universidad de Zaragoza
-
-
-
-
35
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman S., and Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence 6 (1984) 721-741
-
(1984)
IEEE Trans. Pattern Anal. Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
36
-
-
0001667705
-
Bayesian inference in econometric models using Monte Carlo integration
-
Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 (1989) 1317-1339
-
(1989)
Econometrica
, vol.57
, pp. 1317-1339
-
-
Geweke, J.1
-
37
-
-
0003098460
-
Applications of estimation theory to numerical weather prediction
-
Bengtsson L., Ghil M., and Källén E. (Eds), Springer-Verlag, New York
-
Ghil M., Cohn S., Tavantzis J., Bube K., and Isaacson E. Applications of estimation theory to numerical weather prediction. In: Bengtsson L., Ghil M., and Källén E. (Eds). Dynamic Meteorology: Data Assimilation Methods (1981), Springer-Verlag, New York 139-224
-
(1981)
Dynamic Meteorology: Data Assimilation Methods
, pp. 139-224
-
-
Ghil, M.1
Cohn, S.2
Tavantzis, J.3
Bube, K.4
Isaacson, E.5
-
38
-
-
0041006848
-
Challenges in multivariate spatio-temporal modeling
-
Hamilton, Ontario, Canada, p
-
Goodall, C., Mardia, K. (1994). Challenges in multivariate spatio-temporal modeling. In: Proceedings of the XVIIth International Biometric Conference. Hamilton, Ontario, Canada, p. 17
-
(1994)
Proceedings of the XVIIth International Biometric Conference
, pp. 17
-
-
Goodall, C.1
Mardia, K.2
-
39
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
Gordon N., Salmond D., and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140 (1993) 107-113
-
(1993)
IEE Proc. F
, vol.140
, pp. 107-113
-
-
Gordon, N.1
Salmond, D.2
Smith, A.3
-
40
-
-
84950427374
-
An approach to statistical spatial-temporal modeling of meteorological fields
-
Handcock M., and Wallis J. An approach to statistical spatial-temporal modeling of meteorological fields. J. Amer. Statist. Assoc. 89 426 (1994) 368-390
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, Issue.426
, pp. 368-390
-
-
Handcock, M.1
Wallis, J.2
-
41
-
-
0242501579
-
Statistical process control and model monitoring
-
Harrison P.J., and Lai I.C. Statistical process control and model monitoring. J. Appl. Statist. 26 (1999) 273-292
-
(1999)
J. Appl. Statist.
, vol.26
, pp. 273-292
-
-
Harrison, P.J.1
Lai, I.C.2
-
45
-
-
0001917942
-
Space-time modeling with long-memory dependence: Assessing ireland's wind power resource (with discussion)
-
Haslett J., and Raftery A. Space-time modeling with long-memory dependence: Assessing ireland's wind power resource (with discussion). J. Roy. Statist. Soc., Ser. C 38 (1989) 1-50
-
(1989)
J. Roy. Statist. Soc., Ser. C
, vol.38
, pp. 1-50
-
-
Haslett, J.1
Raftery, A.2
-
46
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
47
-
-
0000489685
-
Observations on the statistical iteration of matrices
-
Hetherington J. Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713-2719
-
(1984)
Phys. Rev. A
, vol.30
, pp. 2713-2719
-
-
Hetherington, J.1
-
48
-
-
0031294907
-
Monte Carlo filter using the genetic algorithm operator
-
Higuchi T. Monte Carlo filter using the genetic algorithm operator. J. Statist. Comput. Simulation 59 (1997) 1-23
-
(1997)
J. Statist. Comput. Simulation
, vol.59
, pp. 1-23
-
-
Higuchi, T.1
-
49
-
-
12244255598
-
Self-organizing time series model
-
Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
-
Higuchi T. Self-organizing time series model. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Higuchi, T.1
-
51
-
-
2342549244
-
A spatio-temporal model for Mexico city ozone levels
-
Submitted for publication
-
Huerta, G., Sansó, B., Stroud, J.R. (2004). A spatio-temporal model for Mexico city ozone levels. Appl. Statist. Submitted for publication
-
(2004)
Appl. Statist
-
-
Huerta, G.1
Sansó, B.2
Stroud, J.R.3
-
52
-
-
0031275764
-
An overlapping tree approach to multiscale stochastic modeling and estimation
-
Irving W.W., Fieguth P.W., and Willsky A.S. An overlapping tree approach to multiscale stochastic modeling and estimation. IEEE Trans. Image Process. 6 (1997) 1517-1529
-
(1997)
IEEE Trans. Image Process.
, vol.6
, pp. 1517-1529
-
-
Irving, W.W.1
Fieguth, P.W.2
Willsky, A.S.3
-
53
-
-
67649324261
-
Variance-covariance modeling and estimation for multi-resolution spatial models
-
Technical Report, Department of Statistics, Ohio State University
-
Johannesson, G., Cressie, N. (2003). Variance-covariance modeling and estimation for multi-resolution spatial models. Technical Report, Department of Statistics, Ohio State University
-
(2003)
-
-
Johannesson, G.1
Cressie, N.2
-
54
-
-
67649302717
-
Dynamic multi-resolution spatial models
-
Higuchi, T, Iba, Y, Ishiguro, M, Eds
-
Johannesson, G., Cressie, N., Huang, H.-C. (2003) Dynamic multi-resolution spatial models. In: Higuchi, T., Iba, Y., Ishiguro, M. (Eds.), Science of Modeling - The 30th Anniversary of the AIC
-
(2003)
Science of Modeling - The 30th Anniversary of the AIC
-
-
Johannesson, G.1
Cressie, N.2
Huang, H.-C.3
-
56
-
-
0029732459
-
A hierarchical Markov random field model and multi-temperature annealing for parallel image classification
-
Kato Z., Berthod M., and Zerubia J. A hierarchical Markov random field model and multi-temperature annealing for parallel image classification. Graph. Models Image Process. 58 1 (1996) 18-37
-
(1996)
Graph. Models Image Process.
, vol.58
, Issue.1
, pp. 18-37
-
-
Kato, Z.1
Berthod, M.2
Zerubia, J.3
-
57
-
-
0029732459
-
Unsupervised parallel image classification using Markovian models
-
Kato Z., Zerubia J., and Berthod M. Unsupervised parallel image classification using Markovian models. Graph. Models Image Process. 58 1 (1996) 18-37
-
(1996)
Graph. Models Image Process.
, vol.58
, Issue.1
, pp. 18-37
-
-
Kato, Z.1
Zerubia, J.2
Berthod, M.3
-
58
-
-
0001251517
-
Stochastic volatility: Likelihood inference and comparison with ARCH models
-
Kim S., Shephard N., and Chib S. Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econom. Studies 65 (1998) 361-393
-
(1998)
Rev. Econom. Studies
, vol.65
, pp. 361-393
-
-
Kim, S.1
Shephard, N.2
Chib, S.3
-
59
-
-
84950459387
-
Non-Gaussian state-space modeling of nonstationary time series (with discussion)
-
Kitagawa G. Non-Gaussian state-space modeling of nonstationary time series (with discussion). J. Amer. Statist. Assoc. 82 (1987) 1032-1063
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 1032-1063
-
-
Kitagawa, G.1
-
60
-
-
67649339669
-
-
Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models. In: Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis. Honolulu, Hawaii, pp. 110-131
-
Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models. In: Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis. Honolulu, Hawaii, pp. 110-131
-
-
-
-
61
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 (1996) 1-25
-
(1996)
J. Comput. Graph. Statist.
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
62
-
-
0033240221
-
Conditional prior proposal in dynamic models
-
Knorr-Held L. Conditional prior proposal in dynamic models. Scand. J. Statist. 26 (1999) 129-144
-
(1999)
Scand. J. Statist.
, vol.26
, pp. 129-144
-
-
Knorr-Held, L.1
-
63
-
-
0001387339
-
State space and hidden Markov models
-
Barndorff-Nielsen D., and Klüppelberg C. (Eds), Chapman and Hall, Boca Raton
-
Künsch H. State space and hidden Markov models. In: Barndorff-Nielsen D., and Klüppelberg C. (Eds). Complex Stochastic Systems (2001), Chapman and Hall, Boca Raton
-
(2001)
Complex Stochastic Systems
-
-
Künsch, H.1
-
64
-
-
0033878097
-
Discrete Markov image modeling and inference on the quadtree
-
Laferté J.-M., Pérez P., and Heitz F. Discrete Markov image modeling and inference on the quadtree. IEEE Trans. Image Process. 9 3 (2000) 390-404
-
(2000)
IEEE Trans. Image Process.
, vol.9
, Issue.3
, pp. 390-404
-
-
Laferté, J.-M.1
Pérez, P.2
Heitz, F.3
-
65
-
-
0034318798
-
Dynamic hierarchical models - an extension to matricvariate observations
-
Landim F., and Gamerman D. Dynamic hierarchical models - an extension to matricvariate observations. Comput. Statist. Data Anal. 35 (2000) 11-42
-
(2000)
Comput. Statist. Data Anal.
, vol.35
, pp. 11-42
-
-
Landim, F.1
Gamerman, D.2
-
66
-
-
85056409648
-
Another look at conditionally Gaussian Markov random fields
-
Bernardo J., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds), Oxford Universtity Press
-
Lavine M. Another look at conditionally Gaussian Markov random fields. In: Bernardo J., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 6 (1999), Oxford Universtity Press 577-585
-
(1999)
Bayesian Statistics, vol. 6
, pp. 577-585
-
-
Lavine, M.1
-
68
-
-
0001225908
-
Combined parameter and state estimation in simulation-based filtering
-
Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
-
Liu J., and West M. Combined parameter and state estimation in simulation-based filtering. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Liu, J.1
West, M.2
-
70
-
-
67649315675
-
-
Lopes, H. (2002). Sequential analysis of stochastic volatility models: Some econometric applications. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
Lopes, H. (2002). Sequential analysis of stochastic volatility models: Some econometric applications. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
-
-
-
71
-
-
67649308049
-
-
Lopes, H., Marinho, C. (2002). A particle filter algorithm for the Markov switching stochastic volatility model. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
Lopes, H., Marinho, C. (2002). A particle filter algorithm for the Markov switching stochastic volatility model. Technical Report, Department of Statistical Methods, Federal University of Rio de Janeiro
-
-
-
-
73
-
-
25444457509
-
The Kriged Kalman filter (with discussion)
-
Mardia K., Goodall C., Redfern E., and Alonso F. The Kriged Kalman filter (with discussion). Test 7 (1998) 217-285
-
(1998)
Test
, vol.7
, pp. 217-285
-
-
Mardia, K.1
Goodall, C.2
Redfern, E.3
Alonso, F.4
-
74
-
-
5744249209
-
Equation of state calculations by fast computing machine
-
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., and Teller E. Equation of state calculations by fast computing machine. J. Chem. Phys. 21 (1953) 1087-1091
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
75
-
-
33646533501
-
The prediction of Brazilian exports using Bayesian forecasting
-
Migon H.S. The prediction of Brazilian exports using Bayesian forecasting. Investigation Operativa 9 (2000) 95-106
-
(2000)
Investigation Operativa
, vol.9
, pp. 95-106
-
-
Migon, H.S.1
-
76
-
-
84979330299
-
Generalised exponential modell - Δ Bayesian approach
-
Migon H.S., and Gamerman D. Generalised exponential modell - Δ Bayesian approach. J. Forecasting 12 (1993) 573-584
-
(1993)
J. Forecasting
, vol.12
, pp. 573-584
-
-
Migon, H.S.1
Gamerman, D.2
-
78
-
-
0040211272
-
An application of nonlinear Bayesian forecasting to TV advertising
-
Bernardo J.M., DeGroot M.H., Lindley D., and Smith A.F.M. (Eds), North-Holland and Valencia University Press
-
Migon H.S., and Harrison P.J. An application of nonlinear Bayesian forecasting to TV advertising. In: Bernardo J.M., DeGroot M.H., Lindley D., and Smith A.F.M. (Eds). Bayesian Statistics, vol. 2 (1985), North-Holland and Valencia University Press
-
(1985)
Bayesian Statistics, vol. 2
-
-
Migon, H.S.1
Harrison, P.J.2
-
79
-
-
67649345311
-
Bayesian garch models: Approximated methods and applications
-
Migon H.S., and Mazuchelli J. Bayesian garch models: Approximated methods and applications. Rev. Brasil. Econom. 1999 (1999) 111-138
-
(1999)
Rev. Brasil. Econom.
, vol.1999
, pp. 111-138
-
-
Migon, H.S.1
Mazuchelli, J.2
-
80
-
-
67649331329
-
Dynamic models: An application to rainfall-runoff modelling
-
Monteiro A., and Migon H.S. Dynamic models: An application to rainfall-runoff modelling. Stochastic Hydrology and Hydraulics 11 (1997) 115-127
-
(1997)
Stochastic Hydrology and Hydraulics
, vol.11
, pp. 115-127
-
-
Monteiro, A.1
Migon, H.S.2
-
81
-
-
0000507270
-
Monte Carlo integration in general dynamic models
-
Müller P. Monte Carlo integration in general dynamic models. Contemp. Math. 115 (1991) 145-163
-
(1991)
Contemp. Math.
, vol.115
, pp. 145-163
-
-
Müller, P.1
-
82
-
-
0040408818
-
Posterior integration in dynamic models
-
Müller P. Posterior integration in dynamic models. Comput. Sci. Statist. 24 (1992) 318-324
-
(1992)
Comput. Sci. Statist.
, vol.24
, pp. 318-324
-
-
Müller, P.1
-
84
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filters
-
Pitt M., and Shephard N. Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 (1999) 590-599
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, pp. 590-599
-
-
Pitt, M.1
Shephard, N.2
-
85
-
-
84979376623
-
Efficient Bayesian learning in nonlinear dynamic models
-
Pole A., and West M. Efficient Bayesian learning in nonlinear dynamic models. J. Forecasting 9 (1990) 119-136
-
(1990)
J. Forecasting
, vol.9
, pp. 119-136
-
-
Pole, A.1
West, M.2
-
87
-
-
0043243999
-
Practical filtering with sequential parameter learning
-
Technical Report, Graduate School of Business, University of Chicago
-
Polson, N., Stroud, J. Müller, P. (2002). Practical filtering with sequential parameter learning. Technical Report, Graduate School of Business, University of Chicago
-
(2002)
-
-
Polson, N.1
Stroud, J.2
Müller, P.3
-
89
-
-
0000458272
-
Using the SIR algorithm to simulate posterior distributions
-
Bernardo, J, DeGroot, M, Lindley, D, Smith, A, Eds
-
Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (Eds.), Bayesian Statistics, vol. 3
-
(1988)
Bayesian Statistics
, vol.3
-
-
Rubin, D.1
-
90
-
-
0035649131
-
Fast sampling of Gaussian Markov random fields
-
Rue H. Fast sampling of Gaussian Markov random fields. J. Roy. Statist. Soc., Ser. B 65 (2001) 325-338
-
(2001)
J. Roy. Statist. Soc., Ser. B
, vol.65
, pp. 325-338
-
-
Rue, H.1
-
92
-
-
0003258788
-
Likelihood analysis of non-Gaussian measurement time series
-
Shephard N., and Pitt M.K. Likelihood analysis of non-Gaussian measurement time series. Biometrika 84 (1997) 653-667
-
(1997)
Biometrika
, vol.84
, pp. 653-667
-
-
Shephard, N.1
Pitt, M.K.2
-
93
-
-
0000713247
-
State space modelling of cross-classified time series of counts
-
Singh A.C., and Roberts G.R. State space modelling of cross-classified time series of counts. Internat. Statist. Rev. 60 (1992) 321-336
-
(1992)
Internat. Statist. Rev.
, vol.60
, pp. 321-336
-
-
Singh, A.C.1
Roberts, G.R.2
-
94
-
-
0003174553
-
Bayesian statistics without tears: A sampling-resampling perspective
-
Smith A., and Gelfand A. Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 (1993) 84-88
-
(1993)
Amer. Statist.
, vol.46
, pp. 84-88
-
-
Smith, A.1
Gelfand, A.2
-
95
-
-
0036475891
-
Particle filters in state space models with the presence of unknown static parameters
-
Storvik G. Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50 2 (2002) 281-289
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.2
, pp. 281-289
-
-
Storvik, G.1
-
97
-
-
67649384402
-
-
Triantafyllopoulos, K., Harrison, P. (2002). Stochastic volatility forecasting with dynamic models. Research Report sta02-06, School of Mathematics and Statistics, University of Newcastle
-
Triantafyllopoulos, K., Harrison, P. (2002). Stochastic volatility forecasting with dynamic models. Research Report sta02-06, School of Mathematics and Statistics, University of Newcastle
-
-
-
-
98
-
-
67649315673
-
A new class of spatio-temporal models
-
Technical Report, Universidade Federal do Rio de Janeiro
-
Vivar-Rojas, J.C., Ferreira, M.A.R. (2003). A new class of spatio-temporal models. Technical Report, Universidade Federal do Rio de Janeiro
-
(2003)
-
-
Vivar-Rojas, J.C.1
Ferreira, M.A.R.2
-
100
-
-
0000782444
-
Approximating posterior distributions by mixtures
-
West M. Approximating posterior distributions by mixtures. J. Roy. Statist. Soc., Ser. B 55 (1993) 409-422
-
(1993)
J. Roy. Statist. Soc., Ser. B
, vol.55
, pp. 409-422
-
-
West, M.1
-
101
-
-
0003115252
-
Mixture models, Monte Carlo, Bayesian updating and dynamic models
-
Newton J. (Ed), Interface Foundation of North America, Fairfax Station, VA
-
West M. Mixture models, Monte Carlo, Bayesian updating and dynamic models. In: Newton J. (Ed). Computing Science and Statistics: Proceedings of the 24th Symposium of the Interface (1993), Interface Foundation of North America, Fairfax Station, VA 325-333
-
(1993)
Computing Science and Statistics: Proceedings of the 24th Symposium of the Interface
, pp. 325-333
-
-
West, M.1
-
102
-
-
0039518617
-
Monitoring and adaptation in Bayesian forecasting models
-
West M., and Harrison P.J. Monitoring and adaptation in Bayesian forecasting models. J. Amer. Statist. Assoc. 81 (1986) 741-750
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, pp. 741-750
-
-
West, M.1
Harrison, P.J.2
-
104
-
-
84919201360
-
Dynamic generalized linear model and Bayesian forecasting
-
West M., Harrison P.J., and Migon H. Dynamic generalized linear model and Bayesian forecasting. J. Amer. Statist. Assoc. 80 (1985) 73-97
-
(1985)
J. Amer. Statist. Assoc.
, vol.80
, pp. 73-97
-
-
West, M.1
Harrison, P.J.2
Migon, H.3
-
105
-
-
0000414912
-
A dimension-reduced approach to space-time Kalman filtering
-
Wikle C., and Cressie N. A dimension-reduced approach to space-time Kalman filtering. Biometrika 86 (1999) 815-829
-
(1999)
Biometrika
, vol.86
, pp. 815-829
-
-
Wikle, C.1
Cressie, N.2
-
106
-
-
0041985115
-
Hierarchical Bayesian models for predicting the spread of ecological processes
-
Wikle C.K. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84 (2003) 1382-1394
-
(2003)
Ecology
, vol.84
, pp. 1382-1394
-
-
Wikle, C.K.1
-
107
-
-
67649339668
-
A kernel-based spectral approach for spatiotemporal dynamic models
-
Technical Report, Department of Statistics, University of Missouri
-
Wikle, C.K. (2003). A kernel-based spectral approach for spatiotemporal dynamic models. Technical Report, Department of Statistics, University of Missouri
-
(2003)
-
-
Wikle, C.K.1
|