|
Volumn 25, Issue 1, 2006, Pages 46-54
|
Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide
|
Author keywords
Anthraquinone dyes; Supercritical carbon dioxide; WNN
|
Indexed keywords
ANTHRAQUINONE DYES;
SUPERCRITICAL CARBON DIOXIDE;
WAVELET NEURAL NETWORK (WNN) MODEL;
CARBON DIOXIDE;
DYES;
ERROR ANALYSIS;
KETONES;
MATHEMATICAL MODELS;
REGRESSION ANALYSIS;
NEURAL NETWORKS;
ANTHRAQUINONE DERIVATIVE;
CARBON DIOXIDE;
DYE;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
CALCULATION;
COMPUTER PROGRAM;
MULTIPLE LINEAR REGRESSION ANALYSIS;
PREDICTION;
PRESSURE;
PRIORITY JOURNAL;
QUANTITATIVE STRUCTURE PROPERTY RELATION;
SOLUBILITY;
SUPERCRITICAL FLUID;
TEMPERATURE SENSITIVITY;
THEORETICAL MODEL;
VALIDATION PROCESS;
ANTHRAQUINONES;
CARBON DIOXIDE;
COLORING AGENTS;
MODELS, CHEMICAL;
MODELS, MOLECULAR;
NEURAL NETWORKS (COMPUTER);
PRESSURE;
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP;
SOLUBILITY;
TEMPERATURE;
|
EID: 33748128041
PISSN: 10933263
EISSN: None
Source Type: Journal
DOI: 10.1016/j.jmgm.2005.10.012 Document Type: Article |
Times cited : (57)
|
References (50)
|