메뉴 건너뛰기




Volumn 21, Issue 4, 2006, Pages 298-314

The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury

Author keywords

Classification and regression trees; Multiple regression; Neural networks; Outcomes; Traumatic brain injury

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION AND REGRESSION TREE; COMMUNITY INTEGRATION QUESTIONNAIRE; DATA BASE; DISABILITY; DISABILITY RATING SCALE; DISEASE CLASSIFICATION; FUNCTIONAL INDEPENDENCE MEASURE; HOSPITAL DISCHARGE; HUMAN; MAJOR CLINICAL STUDY; MULTIPLE REGRESSION; OUTCOME ASSESSMENT; PREDICTION; PROGNOSIS; QUESTIONNAIRE; RATING SCALE; SCORING SYSTEM; STATISTICAL ANALYSIS; TRAUMATIC BRAIN INJURY;

EID: 33747506451     PISSN: 08859701     EISSN: None     Source Type: Journal    
DOI: 10.1097/00001199-200607000-00003     Document Type: Article
Times cited : (21)

References (35)
  • 1
    • 1242275877 scopus 로고    scopus 로고
    • Neural networks: Advantages and limitations for statistical modeling
    • Paper presented American Statistical Association; Alexandria, Va.
    • Goodman PH, Harrell FE. Neural networks: advantages and limitations for statistical modeling. Paper presented at: Proceedings of the Biometrics Section, Joint Statistical Meeting, American Statistical Association; 1999; Alexandria, Va.
    • (1999) Proceedings of the Biometrics Section, Joint Statistical Meeting
    • Goodman, P.H.1    Harrell, F.E.2
  • 2
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49:1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 3
    • 0032803399 scopus 로고    scopus 로고
    • Neural network applications in physical medicine and rehabilitation
    • Ohno-Machado L, Rowland T. Neural network applications in physical medicine and rehabilitation. Am J Phys Med Rehabil. 1999;78:392-398.
    • (1999) Am J Phys Med Rehabil , vol.78 , pp. 392-398
    • Ohno-Machado, L.1    Rowland, T.2
  • 4
    • 0028037474 scopus 로고
    • Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients
    • Grigsby J, Kooken R, Hershberger J. Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients. Arch Phys Med Rehabil. 1994;75:1077-1081.
    • (1994) Arch Phys Med Rehabil , vol.75 , pp. 1077-1081
    • Grigsby, J.1    Kooken, R.2    Hershberger, J.3
  • 5
    • 0030942588 scopus 로고    scopus 로고
    • Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities
    • Oczowski WJ, Barreca S. Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities. Arch Phys Med Rehabil. 1997;78:340-345.
    • (1997) Arch Phys Med Rehabil , vol.78 , pp. 340-345
    • Oczowski, W.J.1    Barreca, S.2
  • 6
    • 0033779284 scopus 로고    scopus 로고
    • Validity of an artificial neural network in predicting discharge destination from a postacute geriatric rehabilitation unit
    • El-Solh A, Saltzman S, Ramadan F, Naughton B. Validity of an artificial neural network in predicting discharge destination from a postacute geriatric rehabilitation unit. Arch Phys Med Rehabil. 2000;81:1388-1393.
    • (2000) Arch Phys Med Rehabil , vol.81 , pp. 1388-1393
    • El-Solh, A.1    Saltzman, S.2    Ramadan, F.3    Naughton, B.4
  • 7
    • 0027989515 scopus 로고
    • Predicting recovery from aphasia with connectionist networks: Preliminary comparisons with multiple regression
    • Code C, Rowley D, Kertesz A. Predicting recovery from aphasia with connectionist networks: preliminary comparisons with multiple regression. Cortex. 1994;30:527-532.
    • (1994) Cortex , vol.30 , pp. 527-532
    • Code, C.1    Rowley, D.2    Kertesz, A.3
  • 8
    • 0034765730 scopus 로고    scopus 로고
    • Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke
    • Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Fiedler RC, Granger CV. Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke. J Clin Epidemiol. 2001;54:1159-1165.
    • (2001) J Clin Epidemiol , vol.54 , pp. 1159-1165
    • Ottenbacher, K.J.1    Smith, P.M.2    Illig, S.B.3    Linn, R.T.4    Fiedler, R.C.5    Granger, C.V.6
  • 9
    • 0030914688 scopus 로고    scopus 로고
    • Outcome after severe head injury: An analysis of prediction based upon comparison of neural network versus logistic regression analysis
    • Lang E, Pitts L, Damron S, Rutledge R. Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis. Neurol Res. 1997;19:274-280.
    • (1997) Neurol Res , vol.19 , pp. 274-280
    • Lang, E.1    Pitts, L.2    Damron, S.3    Rutledge, R.4
  • 10
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • Eftekhar B, Mohammad K, Ardebili H, Ghodsi M, Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak. 2005:1-8.
    • (2005) BMC Med Inform Decis Mak , pp. 1-8
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.3    Ghodsi, M.4    Ketabchi, E.5
  • 13
    • 0028912964 scopus 로고
    • Classification and regression trees (CART) for prediction of function at 1 year following head trauma
    • Temkin NR, Holubkov R, Machamer JE, Winn HR, Dikmen SS. Classification and regression trees (CART) for prediction of function at 1 year following head trauma. J Neurosurg. 1995;82:764-771.
    • (1995) J Neurosurg , vol.82 , pp. 764-771
    • Temkin, N.R.1    Holubkov, R.2    Machamer, J.E.3    Winn, H.R.4    Dikmen, S.S.5
  • 14
    • 27444446187 scopus 로고    scopus 로고
    • Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis
    • Brown AW, Malec JF, McClelland RL, Diehl NN, Englander J, Cifu DX. Clinical elements that predict outcome after traumatic brain injury: a prospective multicenter recursive partitioning (decision-tree) analysis. J Neurotrauma. 2005;22:1040-1051.
    • (2005) J Neurotrauma , vol.22 , pp. 1040-1051
    • Brown, A.W.1    Malec, J.F.2    McClelland, R.L.3    Diehl, N.N.4    Englander, J.5    Cifu, D.X.6
  • 15
    • 0036320447 scopus 로고    scopus 로고
    • Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression
    • Andrews P, Sleeman D, Statham P, et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97:326-336.
    • (2002) J Neurosurg , vol.97 , pp. 326-336
    • Andrews, P.1    Sleeman, D.2    Statham, P.3
  • 16
    • 84907105591 scopus 로고
    • Evaluating black-boxes as medical decision aids: Issues arising from a study of neural networks
    • Hart A, Wyatt J. Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks. Med Inform. 1990;15:229-236.
    • (1990) Med Inform , vol.15 , pp. 229-236
    • Hart, A.1    Wyatt, J.2
  • 17
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35:352-359.
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 20
    • 0027183699 scopus 로고
    • Assessment of community integration following rehabilitation for traumatic brain injury
    • Willer B, Rosenthal M, Kreutzer JS. Assessment of community integration following rehabilitation for traumatic brain injury. J Head Trauma Rehabil. 1993;8:75-87.
    • (1993) J Head Trauma Rehabil , vol.8 , pp. 75-87
    • Willer, B.1    Rosenthal, M.2    Kreutzer, J.S.3
  • 21
    • 0028209585 scopus 로고
    • The Community Integration Questionnaire: A comparative examination
    • Willer B, Ottenbacher KJ, Coad ML. The Community Integration Questionnaire: a comparative examination. Am J Phys Med Rehabil. 1994;73:103-111.
    • (1994) Am J Phys Med Rehabil , vol.73 , pp. 103-111
    • Willer, B.1    Ottenbacher, K.J.2    Coad, M.L.3
  • 22
    • 1642343504 scopus 로고    scopus 로고
    • Risk adjusting rehabilitation outcomes: An overview of methodologic issues
    • Iezzoni LI. Risk adjusting rehabilitation outcomes: an overview of methodologic issues. Am J Phys Med Rehabil. 2004;83:316-326.
    • (2004) Am J Phys Med Rehabil , vol.83 , pp. 316-326
    • Iezzoni, L.I.1
  • 26
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7:147-177.
    • (2002) Psychol Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 27
    • 1242302480 scopus 로고    scopus 로고
    • Methods for handling missing data
    • Schinka JA, Velicer WF, eds. 2 vols. New York: John Wiley and Sons
    • Graham JW, Cumsille PE, Elek-Fisk E. Methods for handling missing data. In: Schinka JA, Velicer WF, eds. Research Methods in Psychology. 2 vols. New York: John Wiley and Sons; 2003:87-114.
    • (2003) Research Methods in Psychology , pp. 87-114
    • Graham, J.W.1    Cumsille, P.E.2    Elek-Fisk, E.3
  • 28
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing data problems: A data analyst's perspective
    • Schafer JL, Olsen MK. Multiple imputation for multivariate missing data problems: a data analyst's perspective. Multivariate Behav Res. 1998;33:545-571.
    • (1998) Multivariate Behav Res , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 30
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • Burke HB, Goodman PH, Rosen DB, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 1996;79:857-862.
    • (1996) Cancer , vol.79 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 31
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16:199-215.
    • (2001) Stat Sci , vol.16 , pp. 199-215
    • Breiman, L.1
  • 32
    • 0033781903 scopus 로고    scopus 로고
    • Use of injury severity variables in determining disability and community integration after traumatic brain injury
    • Wagner AK, Hammond FM, Sasser HC, Wiercisiewski DN, James H. Use of injury severity variables in determining disability and community integration after traumatic brain injury. J Trauma Inj Infect Crit Care. 2000;49:411-419.
    • (2000) J Trauma Inj Infect Crit Care , vol.49 , pp. 411-419
    • Wagner, A.K.1    Hammond, F.M.2    Sasser, H.C.3    Wiercisiewski, D.N.4    James, H.5
  • 33
    • 0033024999 scopus 로고    scopus 로고
    • Prediction of community integration and vocational outcome 2-5 years after traumatic brain injury rehabilitation in Australia
    • Fleming J, Tooth L, Hassell M, Chan W. Prediction of community integration and vocational outcome 2-5 years after traumatic brain injury rehabilitation in Australia. Brain Inj. 1999;13:417-431.
    • (1999) Brain Inj , vol.13 , pp. 417-431
    • Fleming, J.1    Tooth, L.2    Hassell, M.3    Chan, W.4
  • 34
    • 0031830129 scopus 로고    scopus 로고
    • Stroke rehabilitation outcome variation in Veterans Affairs rehabilitation units: Accounting for case mix
    • Reker DM, O'Donnell JC, Hamilton BB. Stroke rehabilitation outcome variation in Veterans Affairs rehabilitation units: accounting for case mix. Arch Phys Med Rehabil. 1998;79:751-757.
    • (1998) Arch Phys Med Rehabil , vol.79 , pp. 751-757
    • Reker, D.M.1    O'Donnell, J.C.2    Hamilton, B.B.3
  • 35
    • 0000234495 scopus 로고    scopus 로고
    • Predicting outcome in the head-injured patient
    • Narayan RK, Wilberger JE, Povlishock JT, eds. New York: McGraw-Hill
    • Choi SC, Barnes TY. Predicting outcome in the head-injured patient. In: Narayan RK, Wilberger JE, Povlishock JT, eds. Neurotrauma. New York: McGraw-Hill; 1996:779-792.
    • (1996) Neurotrauma , pp. 779-792
    • Choi, S.C.1    Barnes, T.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.