메뉴 건너뛰기




Volumn 43, Issue 7, 2006, Pages 1252-1259

Efficient approach to intrusion detection based on boosting rule learning

Author keywords

Detection rate; False positive rate; Generalization performance; Intrusion detection; Network security; Rule learning

Indexed keywords

COMPUTER NETWORKS; LEARNING ALGORITHMS; PATTERN RECOGNITION;

EID: 33747449181     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: 10.1360/crad20060718     Document Type: Article
Times cited : (5)

References (15)
  • 1
    • 0029267472 scopus 로고
    • State transition analysis: A rule-based intrusion detection approach
    • K. Illgun, R. Kemmerer, P. A. Porras. State transition analysis: A rule-based intrusion detection approach [J]. IEEE Trans. Software Engineering, 1995, 21(3): 181-199
    • (1995) IEEE Trans. Software Engineering , vol.21 , Issue.3 , pp. 181-199
    • Illgun, K.1    Kemmerer, R.2    Porras, P.A.3
  • 3
    • 0242667960 scopus 로고
    • Detecting unusual program behavior using the statistical components of NIDES
    • J. P. Anderson, et al. Detecting unusual program behavior using the statistical components of NIDES [OL]. http://www.sdl.sri.com/papers/5sri/5sri.pdf, 1995
    • (1995)
    • Anderson, J.P.1
  • 4
    • 0026850007 scopus 로고
    • A neural network component for an intrusion detection system
    • Los Alamitos: IEEE Computer society Press
    • H. Debar, M. Becker, D. Siboni. A neural network component for an intrusion detection system [C]. In: Proc. 1992 IEEE Symposium on Security and Privacy. Los Alamitos: IEEE Computer society Press, 1992. 240-251
    • (1992) Proc. 1992 IEEE Symposium on Security and Privacy , pp. 240-251
    • Debar, H.1    Becker, M.2    Siboni, D.3
  • 5
    • 0242456143 scopus 로고    scopus 로고
    • NATE: Network analysis of anomalous traffic events: A low-cost approach
    • New York: ACM Press
    • C. Taylor, J. A. Foss. NATE: Network analysis of anomalous traffic events: A low-cost approach [C]. In: Proc. New Security Paradigms Workshop. New York: ACM Press, 2002. 89-96
    • (2002) Proc. New Security Paradigms Workshop , pp. 89-96
    • Taylor, C.1    Foss, J.A.2
  • 7
    • 0001330342 scopus 로고
    • Efficient rule induction
    • San Francisco: Morgan Kaufmann
    • W. W. Cohen. Efficient rule induction [C]. In: Proc. 12th Int'l Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1995. 115-123
    • (1995) Proc. 12th Int'l Conf. Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 8
    • 84940104123 scopus 로고    scopus 로고
    • A data mining framework for building intrusion detection models
    • Piscataway, NJ: IEEE Press
    • L. Wenke, S. J. Stolfo, K. W. Mok. A data mining framework for building intrusion detection models [C]. In: Proc. 1999 IEEE Symposium on Security and Privacy. Piscataway, NJ: IEEE Press, 1999. 120-132
    • (1999) Proc. 1999 IEEE Symposium on Security and Privacy , pp. 120-132
    • Wenke, L.1    Stolfo, S.J.2    Mok, K.W.3
  • 9
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability [J]. Machine Learning, 1990, 5(2): 197-227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 11
    • 58149321460 scopus 로고
    • Boosting a weak algorithm by majority
    • Y. Freund. Boosting a weak algorithm by majority [J]. Information and Computation, 1995, 121(2): 256-285
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 12
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999, 37(3): 297-336
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 13
    • 50249160574 scopus 로고    scopus 로고
    • KDD cup 1999 intrusion detection dataset
    • S. J. Stolfo, W. Fan, L. Wenke, et al. KDD Cup 1999 Intrusion Detection Dataset [OL]. http://www.ics.uci.edu/-kdd/databases/kddcup99/, 1999
    • (1999)
    • Stolfo, S.J.1    Fan, W.2    Wenke, L.3
  • 15
    • 0003798642 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • T. Joachims. Making large-scale SVM learning practical [OL]. http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz, 1999
    • (1999)
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.