메뉴 건너뛰기




Volumn 9, Issue 6, 2005, Pages 589-602

Identifying noisy features with the Pairwise Attribute Noise Detection Algorithm

Author keywords

data cleaning; Noise detection; software measurement; software quality

Indexed keywords

COMPUTER SOFTWARE SELECTION AND EVALUATION; DATA MINING; SIGNAL DETECTION;

EID: 33746913215     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2005-9606     Document Type: Article
Times cited : (9)

References (29)
  • 9
    • 0013331361 scopus 로고    scopus 로고
    • Real-world data is dirty: Data cleansing and the merge/purge problem
    • M.A. Hernandez and S.J. Stolfo, Real-world data is dirty: Data cleansing and the merge/purge problem, Data Mining and Knowledge Discovery 2(1) (1998), 9-37.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 9-37
    • Hernandez, M.A.1    Stolfo, S.J.2
  • 12
    • 7044254621 scopus 로고    scopus 로고
    • Detecting outliers using rule-based modeling for improving CBR-based software quality classification models
    • K.D. Ashley and D.G. Bridge, eds, Springer-Verlag LNAI
    • T.M. Khoshgoftaar, L.A. Bullar and K. Gao, Detecting outliers using rule-based modeling for improving CBR-based software quality classification models, in: Proceedings of the 16th International Conference on Case-Based Reasoning, (Vol. 1689), K.D. Ashley and D.G. Bridge, eds, Springer-Verlag LNAI, 2003, pp. 216-230.
    • (2003) Proceedings of the 16th International Conference on Case-Based Reasoning , vol.1689 , pp. 216-230
    • Khoshgoftaar, T.M.1    Bullar, L.A.2    Gao, K.3
  • 13
    • 16244415234 scopus 로고    scopus 로고
    • Generarting multiple noise elimination filters with the ensemble-partitioning filter
    • Las Vegas, NV, USA, November IEEE Systems, Man and Cybernetics Society
    • T.M. Khoshgoftaar and P. Rebours, Generarting multiple noise elimination filters with the ensemble-partitioning filter, In Proceedings of the IEEE International Conference on Information Reuse and Integration, pages 369-375, Las Vegas, NV, USA, November 2004. IEEE Systems, Man and Cybernetics Society.
    • (2004) Proceedings of the IEEE International Conference on Information Reuse and Integration , pp. 369-375
    • Khoshgoftaar, T.M.1    Rebours, P.2
  • 14
    • 0141924286 scopus 로고    scopus 로고
    • Analogy-based practical classification rules for software quality estimation
    • December
    • T.M. Khoshgoftaar and N. Seliya, Analogy-based practical classification rules for software quality estimation, Empirical Software Engineering Journal 8(4) (December 2003), 325-350.
    • (2003) Empirical Software Engineering Journal , vol.8 , Issue.4 , pp. 325-350
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 15
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Chicago, IL September IEEE Computer Society
    • T.M. Khoshgoftaar and N. Seliya, The necessity of assuring quality in software measurement data, In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
    • (2004) Proceedings of 10th International Software Metrics Symposium , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 23
    • 84883691064 scopus 로고
    • SAS Institute, SAS/STAT User's Guide, SAS Institute Inc.
    • SAS Institute, SAS/STAT User's Guide, SAS Institute Inc., 1992.
    • (1992)
  • 28
    • 2142824230 scopus 로고    scopus 로고
    • Analyzing software measurement data with clustering techniques
    • March
    • S. Zhong, T.M. Khoshgoftaar and N. Seliya, Analyzing software measurement data with clustering techniques, IEEE Intelligent Systems, March 2004, 22-29.
    • (2004) IEEE Intelligent Systems , pp. 22-29
    • Zhong, S.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 29
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • in press
    • X. Zhu and X. Wu, Class noise vs attribute noise: A quantitative study of their impacts, Artificial Intelligence Review (2004), in press.
    • (2004) Artificial Intelligence Review
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.