-
2
-
-
0037057806
-
-
Dalphond, J.; Bazzi, H. S.; Kahrim, K.; Sleiman, H. F. Macromol. Chem. Phys. 2002, 203, 1988-1994.
-
(2002)
Macromol. Chem. Phys.
, vol.203
, pp. 1988-1994
-
-
Dalphond, J.1
Bazzi, H.S.2
Kahrim, K.3
Sleiman, H.F.4
-
5
-
-
32544441116
-
-
Nair, K. P.; Pollino, J. M.; Weck, M. Macromolecules 2006, 39, 931-904.
-
(2006)
Macromolecules
, vol.39
, pp. 931-1904
-
-
Nair, K.P.1
Pollino, J.M.2
Weck, M.3
-
7
-
-
33745766651
-
-
South, C. R.; Leung, K. C.-F.; Lanari, D.; Stoddart, J. F.; Weck, M. Macromolecules 2006, 39, 3738-3744.
-
(2006)
Macromolecules
, vol.39
, pp. 3738-3744
-
-
South, C.R.1
Leung, K.C.-F.2
Lanari, D.3
Stoddart, J.F.4
Weck, M.5
-
8
-
-
0035942475
-
-
Brown, D. E.; Ramachandran, K.; Carter, K. R.; Allen, C. W. Macromolecules 2001, 34, 2870-2875.
-
(2001)
Macromolecules
, vol.34
, pp. 2870-2875
-
-
Brown, D.E.1
Ramachandran, K.2
Carter, K.R.3
Allen, C.W.4
-
9
-
-
0035942454
-
-
Allcock, H. R.; de Denus, C. R.; Prange, R.; Laredo, W. R. Macromolecules 2001, 34, 2757-2765.
-
(2001)
Macromolecules
, vol.34
, pp. 2757-2765
-
-
Allcock, H.R.1
De Denus, C.R.2
Prange, R.3
Laredo, W.R.4
-
10
-
-
0033330624
-
-
Allcock, H. R.; Laredo, W. R.; deDenus, C. R.; Taylor, J. P. Macromolecules 1999, 32, 7719-7725.
-
(1999)
Macromolecules
, vol.32
, pp. 7719-7725
-
-
Allcock, H.R.1
Laredo, W.R.2
DeDenus, C.R.3
Taylor, J.P.4
-
11
-
-
0035251230
-
-
Allcock, H. R.; Laredo, W. R.; Kellam, E. C.; Morford, R. V. Macromolecules 2001, 34, 787-794.
-
(2001)
Macromolecules
, vol.34
, pp. 787-794
-
-
Allcock, H.R.1
Laredo, W.R.2
Kellam, E.C.3
Morford, R.V.4
-
12
-
-
0030569117
-
-
Allcock, H. R.; O'Connor, S. J. M.; Olmeijer, D. L.; Napierala, M. E.; Cameron, C. G. Macromolecules 1996, 29, 7544-7552.
-
(1996)
Macromolecules
, vol.29
, pp. 7544-7552
-
-
Allcock, H.R.1
O'Connor, S.J.M.2
Olmeijer, D.L.3
Napierala, M.E.4
Cameron, C.G.5
-
13
-
-
33746866446
-
-
note
-
31P NMR spectra confirmed the absence of hexachlorocyclotriphosphazene to less than 0.1%. However, a small amount of hexachlorocyclotriphosphazene can be tolerated because it can be removed at later stages after full substitution by either precipitation or dialysis.
-
-
-
-
14
-
-
33746873013
-
-
note
-
A typical polymerization was carried out using dichloromethane as a solvent at a concentration between 0.2 and 0.02 g of monomer/mL of solvent. The monomer, mono(5-norbornene-2-methoxy)-pentachlorocyclotriphosphazene 3, was degassed before polymerization. It was then diluted with dichloromethane, and the catalyst (bis(tricyclohexylphosphine)ruthenium benzylidene dichloroide), dissolved in dichloromethane, was added to the monomer solution. Reactions were typically complete within several hours at 25°C, although most reactions were allowed to proceed for up to 72 h to ensure completion of the polymerization.
-
-
-
-
15
-
-
33746928043
-
-
note
-
Living polymer 4 cannot be evaluated by GPC without replacement of chlorine groups on the phosphazene rings. It has been found that P-Cl bonds interact with GPC columns and must be replaced prior to molecular weight characterization. Thus, the living monomer may be terminated with ethyl vinyl ether, substituted by nucleophilic replacement of the chlorine atoms, and then the molecular weight is estimated by gel permeation chromatography.
-
-
-
-
16
-
-
33746885592
-
-
note
-
31P NMR spectroscopy indicated the presence of a diblock copolymer. A separate experiment showed a similar spectrum when sodium 2,2,2-trifluoroethoxide and monomer 2 (R = 2-(2-methoxyethoxy)-ethanoxide) were added at the same time.
-
-
-
-
17
-
-
33746927660
-
-
note
-
A control polymer was synthesized to evaluate the effects of a nucleophile on the living chain end. The control targeted the same block length but proceeded through route B; i.e., nucleophilic substitution occurred after termination of the polymer.
-
-
-
|