메뉴 건너뛰기




Volumn 12, Issue 3, 2006, Pages 353-380

A neural learning classifier system with self-adaptive constructivism for mobile robot control

Author keywords

Adaptation; Generic algorithm; Neural network; Reinforcement learning; Robotics

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ARTIFICIAL INTELLIGENCE; COMPUTER SIMULATION; GENETIC ALGORITHMS; LEARNING ALGORITHMS; NEURAL NETWORKS; ROBOT LEARNING; ROBOTICS;

EID: 33746844882     PISSN: 10645462     EISSN: 15309185     Source Type: Journal    
DOI: 10.1162/artl.2006.12.3.353     Document Type: Article
Times cited : (32)

References (46)
  • 1
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • Abbass, H. A. (2003). Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation, 15, 2705-2726.
    • (2003) Neural Computation , vol.15 , pp. 2705-2726
    • Abbass, H.A.1
  • 2
    • 0041641435 scopus 로고    scopus 로고
    • A genetic programming classifier system
    • In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), San Mateo, CA: Morgan Kaufmann
    • Ahluwalia, M., & Bull, L. (1999). A genetic programming classifier system. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 (pp. 11-18). San Mateo, CA: Morgan Kaufmann.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 , pp. 11-18
    • Ahluwalia, M.1    Bull, L.2
  • 3
    • 0030149709 scopus 로고    scopus 로고
    • Purposive behaviour acquisition for a real robot by vision based reinforcement learning
    • Asada, M., Noda, S., Tawaratsumida, S., & Hosoda, A. (1996). Purposive behaviour acquisition for a real robot by vision based reinforcement learning. Machine Learning, 23, 2-3.
    • (1996) Machine Learning , vol.23 , pp. 2-3
    • Asada, M.1    Noda, S.2    Tawaratsumida, S.3    Hosoda, A.4
  • 5
    • 33746803035 scopus 로고    scopus 로고
    • On using constructivism in neural learning classifier systems
    • In J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, & H.-P. Schwefel (Eds.), Berlin: Springer-Verlag
    • Bull, L. (2002). On using constructivism in neural learning classifier systems. In J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, & H.-P. Schwefel (Eds.), Parallel problem solving from nature - PPSN VII (pp. 558-567). Berlin: Springer-Verlag.
    • (2002) Parallel Problem Solving from Nature - PPSN VII , pp. 558-567
    • Bull, L.1
  • 6
    • 0029258259 scopus 로고    scopus 로고
    • Artificial symbiogenesis
    • Bull, L., & Fogarty, T. C. (1996). Artificial symbiogenesis. Artificial Life, 2(3), 269-292.
    • (1996) Artificial Life , vol.2 , Issue.3 , pp. 269-292
    • Bull, L.1    Fogarty, T.C.2
  • 9
    • 0041641437 scopus 로고    scopus 로고
    • Accuracy-based neuro and neuro-fuzzy classifier systems
    • In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, & N. Jonoska (Eds.), San Mateo, CA: Morgan Kaufmann
    • Bull, L., & O'Hara, T. (2002). Accuracy-based neuro and neuro-fuzzy classifier systems. In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, & N. Jonoska (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-02 (pp. 905-911). San Mateo, CA: Morgan Kaufmann.
    • (2002) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-02 , pp. 905-911
    • Bull, L.1    O'Hara, T.2
  • 10
    • 0042483133 scopus 로고
    • Mapping neural networks into classifier systems
    • In J. D. Schaffer (Ed.), San Mateo, CA: Morgan Kaufmann
    • Davis, L. (1989). Mapping neural networks into classifier systems. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms (pp. 375-378). San Mateo, CA: Morgan Kaufmann.
    • (1989) Proceedings of the Third International Conference on Genetic Algorithms , pp. 375-378
    • Davis, L.1
  • 13
    • 0001024535 scopus 로고
    • A Rosetta stone for connectionism
    • Farmer, D. (1989). A Rosetta stone for connectionism. Physica D, 42, 153-187.
    • (1989) Physica D , vol.42 , pp. 153-187
    • Farmer, D.1
  • 14
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • Fritzke, B. (1994). Fast learning with incremental RBF networks. Neural Processing Letters, 1(1), 2-5.
    • (1994) Neural Processing Letters , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 17
    • 0011656690 scopus 로고
    • Adaptation
    • In R. Rosen & F. M. Snell (Eds.), New York: Academic Press
    • Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in Theoretical Biology 4 (pp. 263-293). New York: Academic Press.
    • (1976) Progress in Theoretical Biology , vol.4 , pp. 263-293
    • Holland, J.H.1
  • 19
    • 84944329221 scopus 로고    scopus 로고
    • TCS learning classifier system controller on a real robot
    • In J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, & H.-P. Schwefel (Eds.), Berlin: Springer-Verlag
    • Hurst, J., Bull, L., & Melhuish, C. (2002). TCS learning classifier system controller on a real robot. In J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, & H.-P. Schwefel (Eds.), Parallel problem solving from nature - PPSN VII (pp. 588-600). Berlin: Springer-Verlag.
    • (2002) Parallel Problem Solving from Nature - PPSN VII , pp. 588-600
    • Hurst, J.1    Bull, L.2    Melhuish, C.3
  • 20
    • 1542293638 scopus 로고    scopus 로고
    • Extending the representation of classifier conditions Part I: From binary to messy coding
    • In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), San Mateo, CA: Morgan Kaufmann
    • Lanzi, P.-L. (1999). Extending the representation of classifier conditions Part I: From binary to messy coding. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 (pp. 11-18). San Mateo, CA: Morgan Kaufmann.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 , pp. 11-18
    • Lanzi, P.-L.1
  • 21
    • 0000732964 scopus 로고    scopus 로고
    • Extending the representation of classifier conditions Part II: From messy coding to S-expressions
    • In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), San Mateo, CA: Morgan Kaufmann
    • Lanzi, P.-L. (1999). Extending the representation of classifier conditions Part II: From messy coding to S-expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 (pp. 11-18). San Mateo, CA: Morgan Kaufmann.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-99 , pp. 11-18
    • Lanzi, P.-L.1
  • 22
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on reinforcement learning, planning and teachings
    • Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teachings. Machine Learning, 8, 625-632.
    • (1992) Machine Learning , vol.8 , pp. 625-632
    • Lin, L.-J.1
  • 23
    • 0002402847 scopus 로고
    • Cooperation and community structure in artificial ecosystems
    • Lindgren, K., & Nordhal, M. G. (1995). Cooperation and community structure in artificial ecosystems. Artificial Life, 1(1), 15-38.
    • (1995) Artificial Life , vol.1 , Issue.1 , pp. 15-38
    • Lindgren, K.1    Nordhal, M.G.2
  • 26
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty, D. E., & Miikkulainen, R. (1997). Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation, 5(2), 373-399.
    • (1997) Evolutionary Computation , vol.5 , Issue.2 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 28
    • 0003028328 scopus 로고    scopus 로고
    • Learning to adapt to changing environments in evolving neural networks
    • Nolfi, S., & Parisi, D. (1997). Learning to adapt to changing environments in evolving neural networks. Adaptive Behaviour, 5, 99-105.
    • (1997) Adaptive Behaviour , vol.5 , pp. 99-105
    • Nolfi, S.1    Parisi, D.2
  • 30
    • 0003989214 scopus 로고    scopus 로고
    • Hierarchical control and learning for Markov decision processes
    • Ph.D. thesis. University of California, Berkeley
    • Parr, R. (1998). Hierarchical control and learning for Markov decision processes. Ph.D. thesis. University of California, Berkeley.
    • (1998)
    • Parr, R.1
  • 31
    • 0000955979 scopus 로고    scopus 로고
    • Incremental multi-step Q-learning
    • Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-learning. Machine Learning, 22, 283-290.
    • (1996) Machine Learning , vol.22 , pp. 283-290
    • Peng, J.1    Williams, R.J.2
  • 32
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 33
    • 0031420798 scopus 로고    scopus 로고
    • The neural basis of cognitive development: A constructionist manifesto
    • Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructionist manifesto. Behavioral and Brain Sciences, 20(4), 537-596.
    • (1997) Behavioral and Brain Sciences , vol.20 , Issue.4 , pp. 537-596
    • Quartz, S.R.1    Sejnowski, T.J.2
  • 34
    • 0027849294 scopus 로고
    • Constructive higher-order network algorithm that is polynomial time
    • Redding, N. J., Kowalcyzk, A., & Downs, T. (1993). Constructive higher-order network algorithm that is polynomial time. Neural Networks, 6, 997-1010.
    • (1993) Neural Networks , vol.6 , pp. 997-1010
    • Redding, N.J.1    Kowalcyzk, A.2    Downs, T.3
  • 36
    • 0031231885 scopus 로고    scopus 로고
    • Experiments in reinforcement learning in problems with continuous state and action spaces
    • Santamaria, J. C., Sutton, R., & Ram, A. (1998). Experiments in reinforcement learning in problems with continuous state and action spaces. Adaptive Behaviour, 6(2), 163-217.
    • (1998) Adaptive Behaviour , vol.6 , Issue.2 , pp. 163-217
    • Santamaria, J.C.1    Sutton, R.2    Ram, A.3
  • 38
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • Stanley, K., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 99-128.
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-128
    • Stanley, K.1    Miikkulainen, R.2
  • 39
    • 0038884509 scopus 로고
    • Is a learning classifier system a type of neural network?
    • Smith, R. E., & Cribbs, H. B. (1994). Is a learning classifier system a type of neural network? Evolutionary Computation, 2(1), 19-36.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 19-36
    • Smith, R.E.1    Cribbs, H.B.2
  • 40
    • 33847202724 scopus 로고
    • Learning to predict by the method of temporal differences
    • Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3, 9-44.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 42
    • 0029390263 scopus 로고
    • Reinforcement learning of multiple tasks using a hierarchical CMAC architecture
    • Tham, C. L. (1995). Reinforcement learning of multiple tasks using a hierarchical CMAC architecture. Robotics and Autonomous Systems, 15, 247-274.
    • (1995) Robotics and Autonomous Systems , vol.15 , pp. 247-274
    • Tham, C.L.1
  • 43
    • 0001418767 scopus 로고
    • The fuzzy classifier system: A classifier system for continuously varying variables
    • In L. Booker & R. Belew (Eds.), San Mateo, CA: Morgan Kaufmann
    • Valenzuela-Rendon, M. (1991). The fuzzy classifier system: A classifier system for continuously varying variables. In L. Booker & R. Belew (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms (pp. 346-353). San Mateo, CA: Morgan Kaufmann.
    • (1991) Proceedings of the Fourth International Conference on Genetic Algorithms , pp. 346-353
    • Valenzuela-Rendon, M.1
  • 44
    • 0002447833 scopus 로고
    • ZCS: A zeroth-level classifier system
    • Wilson, S. W. (1994). ZCS: A zeroth-level classifier system. Evolutionary Computation, 2(1), 1-18.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 1-18
    • Wilson, S.W.1
  • 45
    • 0042643357 scopus 로고    scopus 로고
    • Get Real! XCS with continuous-valued inputs
    • In P.-L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Berlin: Springer-Verlag
    • Wilson, S. W. (2000). Get Real! XCS with continuous-valued inputs. In P.-L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Learning classifier systems: From foundations to applications (pp. 209-222). Berlin: Springer-Verlag.
    • (2000) Learning Classifier Systems: From Foundations to Applications , pp. 209-222
    • Wilson, S.W.1
  • 46
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.